Перевод: с русского на английский

с английского на русский

around which

  • 1 технологии для автоматизации

    1. automation technologies

     

    технологии для автоматизации
    -
    [Интент]

    Параллельные тексты EN-RU

    Automation technologies: a strong focal point for our R&D

    Технологии для автоматизации - одна из главных тем наших научно исследовательских разработок

    Automation is an area of ABB’s business with an extremely high level of technological innovation.

    Автоматика относится к одной из областей деятельности компании АББ, для которой характерен исключительно высокий уровень технических инноваций.

    In fact, it may be seen as a showcase for exhibiting the frontiers of development in several of today’s emerging technologies, like short-range wireless communication and microelectromechanical systems (MEMS).

    В определенном смысле ее можно уподобить витрине, в которой выставлены передовые разработки из области только еще зарождающихся технологий, примерами которых являются ближняя беспроводная связь и микроэлектромеханические системы (micro electromechanical systems MEMS).

    Mechatronics – the synthesis of mechanics and electronics – is another very exciting and rapidly developing area, and the foundation on which ABB has built its highly successful, fast-growing robotics business.

    Еще одной исключительно интересной быстро развивающейся областью и в то же время фундаментом, на котором АББ в последнее время строит свой исключительно успешный и быстро расширяющийся бизнес в области робототехники, является мехатроника - синтез механики с электроникой.

    Robotic precision has now reached the levels we have come to expect of the watch-making industry, while robots’ mechanical capabilities continue to improve significantly.

    Точность работы робототехнических устройств достигла сегодня уровней, которые мы привыкли ожидать только на предприятиях часовой промышленности. Большими темпами продолжают расти и механические возможности роботов.

    Behind the scenes, highly sophisticated electronics and software control every move these robots make.

    А за кулисами всеми перемещениями робота управляют сложные электронные устройства и компьютерные программы.

    Throughout industry today we see a major shift of ‘intelligence’ to lower levels in the automation system hierarchy, leading to a demand for more communication within the system.

    Во всех отраслях промышленности сегодня наблюдается интенсивный перенос "интеллекта" на нижние уровни иерархии автоматизированных систем, что требует дальнейшего развития внутрисистемных средств обмена.

    ‘Smart’ transmitters, with powerful microprocessors, memory chips and special software, carry out vital operations close to the processes they are monitoring.

    "Интеллектуальные" датчики, снабженные высокопроизводительными микропроцессорами, мощными чипами памяти и специальным программно-математическим обеспечением, выполняют особо ответственные операции в непосредственной близости от контролируемых процессов.

    And they capture and store data crucial for remote diagnostics and maintenance.

    Они же обеспечивают возможность измерения и регистрации информации, крайне необходимой для дистанционной диагностики и дистанционного обслуживания техники.

    The communication highway linking such systems is provided by fieldbuses.

    В качестве коммуникационных магистралей, связывающих такого рода системы, служат промышленные шины fieldbus.

    In an ideal world there would be no more than a few, preferably just one, fieldbus standard.

    В идеале на промышленные шины должно было бы существовать небольшое количество, а лучше всего вообще только один стандарт.

    However, there are still too many of them, so ABB has developed ‘fieldbus plugs’ that, with the help of translation, enable devices to communicate across different standards.

    К сожалению, на деле количество их типов продолжает оставаться слишком разнообразным. Ввиду этой особенности рынка промышленных шин компанией АББ разработаны "штепсельные разъемы", которые с помощью средств преобразования обеспечивают общение различных устройств вопреки границам, возникшим из-за различий в стандартах.

    This makes life easier as well as less costly for our customers. Every automation system is dependent on an electrical network for distributing – and interrupting, when necessary – the power needed to carry out its various functions.

    Это, безусловно, не только облегчает, но и удешевляет жизнь нашим заказчикам. Ни одна система автоматики не может работать без сети, обеспечивающей подачу, а при необходимости и отключение напряжения, необходимого для выполнения автоматикой своих задач.

    Here, too, we see a clear trend toward more intelligence and communication, for example in traditional electromechanical devices such as contactors and switches.

    И здесь наблюдаются отчетливо выраженные тенденции к повышению уровня интеллектуальности и расширению возможностей связи, например, в таких традиционных электромеханических устройствах, как контакторы и выключатели.

    We are pleased to see that our R&D efforts in these areas over the past few years are bearing fruit.

    Мы с удовлетворением отмечаем, что научно-исследовательские разработки, выполненные нами за последние годы в названных областях, начинают приносить свои плоды.

    Recently, we have seen a strong increase in the use of wireless technology in industry.

    В последнее время на промышленных предприятиях наблюдается резкое расширение применения техники беспроводной связи.

    This is a key R&D area at ABB, and several prototype applications have already been developed.

    В компании АББ эта область также относится к числу одной из ключевых тем научно-исследовательских разработок, результатом которых стало создание ряда опытных образцов изделий практического направления.

    At the international Bluetooth Conference in Amsterdam in June 2002, we presented a truly ‘wire-less’ proximity sensor – with even a wireless power supply.

    На международной конференции по системам Bluetooth, состоявшейся в Амстердаме в июне 2002 г., наши специалисты выступили с докладом о поистине "беспроводном" датчике ближней локации, снабженном опять-таки "беспроводным" источником питания.

    This was its second major showing after the launch at the Hanover Fair.

    На столь крупном мероприятии это устройство демонстрировалось во второй раз после своего первого показа на Ганноверской торгово-промышленной ярмарке.

    Advances in microelectronic device technology are also having a profound impact on the power electronics systems around which modern drive systems are built.

    Достижения в области микроэлектроники оказывают также глубокое влияние на системы силовой электроники, лежащие в основе современных приводных устройств.

    The ABB drive family ACS 800 is visible proof of this.

    Наглядным тому доказательством может служить линейка блоков регулирования частоты вращения электродвигателей ACS-800, производство которой начато компанией АББ.

    Combining advanced trench gate IGBT technology with efficient cooling and innovative design, this drive – for motors rated from 1.1 to 500 kW – has a footprint for some power ranges which is six times smaller than competing systems.

    Предназначены они для двигателей мощностью от 1,1 до 500 кВт. В блоках применена новейшая разновидность приборов - биполярные транзисторы с изолированным желобковым затвором (trench gate IGBT) в сочетании с новыми конструктивными решениями, благодаря чему в отдельных диапазонах мощностей габариты блоков удалось снизить по сравнению с конкурирующими изделиями в шесть раз.

    To get the maximum benefit out of this innovative drive solution we have also developed a new permanent magnet motor.

    Стремясь с максимальной пользой использовать новые блоки регулирования, мы параллельно с ними разработали новый двигатель с постоянными магнитами.

    It uses neodymium iron boron, a magnetic material which is more powerful at room temperature than any other known today.

    В нем применен новый магнитный материал на основе неодима, железа и бора, характеристики которого при комнатной температуре на сегодняшний день не имеют себе равных.

    The combination of new drive and new motor reduces losses by as much as 30%, lowering energy costs and improving sustainability – both urgently necessary – at the same time.

    Совместное использование нового блока регулирования частоты вращения с новым двигателем снижает потери мощности до 30 %, что позволяет решить сразу две исключительно актуальные задачи:
    сократить затраты на электроэнергию и повысить уровень безотказности.

    These innovations are utilized most fully, and yield the maximum benefit, when integrated by means of our Industrial IT architecture.

    Потенциал перечисленных выше новых разработок используется в наиболее полной степени, а сами они приносят максимальную выгоду, если их интеграция осуществлена на основе нашей архитектуры IndustrialIT.

    Industrial IT is a unique platform for exploiting the full potential of information technology in industrial applications.

    IndustrialIT представляет собой уникальную платформу, позволяющую в максимальной степени использовать возможности информационных технологий применительно к задачам промышленности.

    Consequently, our new products and technologies are Industrial IT Enabled, meaning that they can be integrated in the Industrial IT architecture in a ‘plug and produce’ manner.

    Именно поэтому все наши новые изделия и технологии выпускаются в варианте, совместимом с архитектурой IndustrialIT, что означает их способность к интеграции с этой архитектурой по принципу "подключи и производи".

    We are excited to present in this issue of ABB Review some of our R&D work and a selection of achievements in such a vital area of our business as Automation.

    Мы рады представить в настоящем номере "АББ ревю" некоторые из наших научно-исследовательских разработок и достижений в такой жизненно важной для нашего бизнеса области, как автоматика.

    R&D investment in our corporate technology programs is the foundation on which our product and system innovation is built.

    Вклад наших разработок в общекорпоративные технологические программы группы АББ служит основой для реализации новых технических решений в создаваемых нами устройствах и системах.

    Examples abound in the areas of control engineering, MEMS, wireless communication, materials – and, last but not least, software technologies. Enjoy reading about them.
    [ABB Review]

    Это подтверждается многочисленными примерами из области техники управления, микроэлектромеханических систем, ближней радиосвязи, материаловедения и не в последнюю очередь программотехники. Хотелось бы пожелать читателю получить удовольствие от чтения этих материалов.
    [Перевод Интент]


    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > технологии для автоматизации

  • 2 обтекать

    The ball is a loose fit in the body, so that air can flow () round (or past, or over) it.

    Русско-английский научно-технический словарь переводчика > обтекать

  • 3 на базе которого

    This has been the basic unit of equipment around which automated equipment has been built.

    Русско-английский научно-технический словарь переводчика > на базе которого

  • 4 на базе которого

    This has been the basic unit of equipment around which automated equipment has been built.

    Русско-английский научно-технический словарь переводчика > на базе которого

  • 5 двигатель



    - (газотурбинный, поршневой, тепловой) — engine
    - (гидравлический, пневматический, электрический) — motor
    -, авиационный — aircraft engine
    двигатель, используемый или предназначенный к использованию в авиации для перемещения и (или) поддержания ла, на котором он установлен, в воздухе (рис. 46). — an engine that is used or intended to be used in propelting or lifting aircraft.
    - аналогичной конструкцииengine of identical design and сonstruction
    - без наддува (ид)unsupercharged engine
    -, безредукторный — direct-drive engine
    -, безредукторный винто-вентиляторный (незакопоченный) — unducted fan engine (udf)
    винтовентиляторы вращаются непосредственно силовой (свободной) турбиной с противоположным вращением рабочих колес. — fans are driven directly by a counter-rotating turbine, eliminating complexity of a reduction gearbox.
    -, бензиновый — gasoline engine
    -, боковой (рис. 13) — side engine
    - в подвесной мотогондолеpod engine
    -, вентиляторный, с противоположным вращением вентиляторов — contrafan engine
    - вертикальной наводки, приводной (стрелкового вооружения) — (gun) elevation drive motor
    -, винто-вентиляторный (тввд) — prop-fan engine
    -, включенный (работающий) — operating/running/engine
    -, внешний (по отношению к фюзеляжу) (рис. 44) — outboard engine
    - внутреннего сгоранияinternal-combustion engine
    -, внутренний (по отношению к наружному двигателю) (рис. 44) — inboard engine
    - воздушного охлаждения (пд)air-cooled engine
    двигатель, у которого отвод тепла от цилиндров производится воздухом, непосредственно обдувающим их. — an engine whose running temperature is controlled by means of air cooled cylinders.
    -, вспомогательный (всу) — auxiliary power unit (apu)
    -, выключенный — shutdown engine
    -, выключенный (неработающий) — inoperative engine
    -, высокооборотный — high-speed engine
    -, высотный — high-altitude engine
    -, газотурбинный (гтд) — turbine engine
    -, газотурбинный (вертолетныи) — helicopter turboshaft engine
    -,газотурбинный-энергоузел (стартер-энергоузел) — turbine-starter - auxiliary power unit, starter - apu
    - (-) генераторmotor-generator
    устройство для преобразования одного вида эл. энергии в другую (напр., переменный ток в постоянный). — а motor-generator combination for converting one kind of electric power to another (e.g. ас to dc)
    - горизонтальной наводки, приводной (стрелкового вооружения) — (gun) azimuth drive motor
    - двухвальной схемы (турбовальный)two-shaft turbine engine
    -, двухвальный турбовинтовой — two-shaft turboprop engine
    -, двухвальный турбореактивный — two-shaft /-rotor, -spool/turbojet engine
    -, двухкаскадный — two-rotor /-shaft, -spool/ engine, twin-spool engine
    двухвальный турбореактивный двигатель называется также двухроторным или двухкаскадным двигателем. — а two-rotor engine is a twoshaft or two-spool engine with lp and hp compressors and hp and lp turbines.
    -, двухкаскадный, двухконтурный, (турбореактивный) — two-rotor /twin-spool/ by-pass turbo-jet engine
    -, двухкаскадный, турбовальный, газотурбинный, со свободной турбиной — two-rotor /twin-spool/ turboshaft engine with free-power turbine
    -, двухкаскадный, турбовентиляторвый с устройством отклонения направления тяги — two-rotor /twin-spool/ turbofan engine with thrust deflector system
    -, двухконтурный — by-pass /bypass/ engine
    гтд, в котором, помимо основного внутреннего (первого) контура, имеется наружный (второй) контур, представляющий собой канал кольцевого сечения, оканчивающийся у реактивного сопла. — in а by-pass engine, a part of the air leaving the lp cornpressor is dueted through the by-pass duct around the engine main duct to the exhaust unit to be exhausted to the atmosphere.
    -, двухконтурный с дожиганиem во втором контуре — duct-burning by-pass engine
    -, двухконтурный со смешиванием потоков наружного и и внутренного контуров — by-pass exhaust mixing engine
    -, двухроторный — two-rotor engine
    - двухрядная звезда (пд)double-row radial engine
    двигатель, у которого цнлиндры расположены двумя рядами радиально относительнo одного oбщего коленчатоro вала. — an engine having two rows of cylinders arranged radially around а common crankshaft. the corresponding front and rear cylinders may or may not be in line.
    -, двухтактный (пд) — two-cycle engine
    -, дозвуковой — subsonic engine
    -, доработанный по модификации (1705) — engine incorporating mod. (1705), post-mod. (1705) engine
    -, звездообразный — radial engine
    поршневой двигатель с радиальным расположением цилиндров, оси которых лежат в одной, двух или нескольких плоскостях, перпендикулярных к оси коленчатого вала — an engine having stationary cylinders arranged radially around а commom crankshaft.
    -, звездообразный двухрядный — double-row radial engine
    -, звездообразный однорядный — single-row radial engine
    -, исполнительный (эл.) — (electric) actuator, servo motor
    -, исполнительный, канала курса (крена или тангажа) (гироплатформы) — azimuth (roll or pitch) servornotor
    -, карбюраторный (пд) — carburetor engine
    -, коррекционный (гироскопического прибора) — erection torque motor
    -, критический — critical engine
    двигатель, отказ которого вызывает наиболее неблагоприятные изменения в поведении самолета, управляемости и избытке тяги. — "critical engineп means the engine whose failure would most adversely affect the performance or handling qualities of an aircraft.
    -, крыльевой (установленный на крыле) — wing engine
    - левого вращенияengine of lh rotation
    -, маломощный — low-powered engine
    -, многорядный (пд) — multirow engine
    -, многорядный звездообразный — multirow radial engine
    -, модифицированный — modified engine
    - модульной конструкцииmodule-construction engine

    lp compressor - module i, hp compressor - module 2, etc.
    -, мощный — high-powered engine
    -, недоработанный no модификацин (1705) — engine not incorporating mod. (1705), pre-mod. (1705) engine
    -, незакапоченный — uncowled engine
    - непосредственного впрыска (пд)fuel injection engine
    -, неработающий — inoperative engine
    -, одновальный (гтд) — single-shaft /single-rotor/ turbine engine
    -, одновальный двухконтурный — single-shaft /single-rotor/ bypass engine
    -, одновальный турбовентиляторный — single-shaft /single-rotor/ turbofan engine
    -, одновальный турбовинтовой — single-shaft turboprop engine
    -, одновальный турбореактивный — single-shaft /single-rotor/turbojet engine
    -, однорядный (пд) — single-row engine
    -, опытный — prototype engine
    двигатель определенного тиna, еще не прошедший типовые государственные испытания. — the tirst engine of a type and arrangement not approved previously, to be submitted for type approval test.
    -, основной — main engine
    -, оставшийся (продолжающий работать) — remaining engine
    -, отказавший — inoperative/failed/ engine
    - отработки (эл., исполнительный) — servomotor
    - отработки следящей системыservo loop drive motor
    - подтяга (патронной ленты)ammunition booster torque motor
    -, поперечный коррекционный (авиагоризонта) — roll erection torque motor
    -, поршневой (пд) — reciprocating engine
    - правого вращенияengine of rh rotation
    -, продольный коррекционный (авиагоризонта) — pitch erection torque motor
    -, прямоточный — ramjet engine
    двигатель без механического компрессора, в котором сжатие воздуха обеспечивается поступательным движением самого двигателя. — а jet engine with no meehanical compressor, and using the air for combustion compressed by forward motion of the engine.
    - работающийoperating engine
    -, работающий с перебоями — rough engine
    двигатель, работающий с неисправной системой зажигания или подачи топлива (рабочей смеси) — an engine that is running or firing unevenly, usually due to а faulty condition in either the fuel or ignition systems.
    - рамы крена (гироплатформыroll-gimbal servomotor
    - рамы курса (гироплатформыazimuth-gimbal servomotor
    - рамы тангажа (гироплатформы)pitch-gimbal servomotor
    -, реактивный — jet-engine
    двигатель, в котором энергия топлива преобразуется в кинетическую энергию газовой струи, вытекающей из двигателя, a получающаяся за счет этого сила реакции нenоcредственно используется как сила тяги для перемещения летательного аппарата. — an aircraft engine that derives all or most of its thrust by reaction to its ejection of combustion products (or heated air) in a jet and that obtains oxygen from the atmosphere for the combustion of its fuel.
    -, реактивный, пульсирующий — pulse jet (engine)
    применяется для непосредственного вращения несущеro винта вертолета. — pulse jets are designed for helicopter rotor propulsion.
    -, ремонтный — overhauled engine
    серийный двигатель, отремонтированный или восстановленный до состояния, удовлетворяющего требованиям серийного стандарта, и пригодный для дальнейшей эксплуатации в течение установленного межремонтного ресурса. — an engine which has been repaired or reconditioned to а standard rendering it eligible for the complete overhaul life agreed by the national authority.
    - с внешним смесеобразованием (пд)carburetor engine
    двигатель внутреннего сгорания, у которого горючая смесь образуется вне рабочего цилиндра. — an engine in which the fuel/air mixture is formed in the carburetor.
    - с внутренним смесеобразованиемfuel-injection engine
    двигатель, у которого горючая смесь образуется внутри рабочего цилиндра. — an engine in which fuel is directly injected into the cylinders.
    - с водяным охлаждением (пд)water-cooled engine
    - с высокой степенью сжатияhigh-compression engine
    - с нагнетателем (пд)supercharged engine
    - с наддувом (пд) с осевым компрессором (пд)supercharged engine axial-flom turbine engine
    - с передним расположением вентилятораfront fan turbine engine
    - с противоточной камерой сгорания (гтд)reverse-flow turbine engine
    - с редукторомengine with reduction gear
    - с форсажной камерой (гтд). двигатель с дополнительным сжиганием топлива в специальной камере за турбиной — engine with afterburner, afterburning engine, reheat(ed) engine, engine with thrust augmentor
    - с форсированной (взлетной) мощностьюengine with augmented (takeoff) power rating
    - с центробежным компрессором (гтд)radial-flow turbine engine
    -, серийный — series engine
    двигатель, изготовляемый в серийном производстве и соответствующий опытному двигателю, принятому при государственных испытаниях для серийного производства. — an engine essentially identiin design, in materials, and in methods of construction, with one which has been approved previously.
    - со свободной турбинойfree-luroine engine
    двигатель с двумя турбинами, валы которых кинематически не связаны. одна из турбин обычно служит для привода компрессора, а другая используется для передачи полезной работы потребителю, например, воздушному (или несущему) винту. — the engine with two turbines whose shafts are not mechanically coupled. one turbine drives the compressor, and the other free turbine drives the propeller or rotor.
    - следящей системы по внутреннему крену (гироплатформы)inner roll gimbal servomotor
    - следящей системы по наружному крену (гироплатформы)outer roll gimbal servomotor
    - следящей системы по курсу (гироплатформы)azimuth gimbal servomotor
    - следящей системы по тангажу (гироплатформы)pitch gimbal servomotor
    -, собственно — engine itself
    -, средний (рис. 44) — center engine
    - стабилизации гироплатформы — stable platform-stabilization servomotor/servo/
    -, стартовый (работающий при взлете) — booster
    -, стартовый твердотопливный — solid propellant booster
    -, трехкаскадный, турбореактивный, с передним вентилятором — three-rotor /triple-spool, triple shaft/ front fan turbo-jet engine
    -, турбовентиляторный — turbofan engine
    двухконтурный турбореактивный двигатель, в котором часть воздуха выбрасывается за первыми ступенями компрессора низкого давления, а остальная часть воздуха за кнд поступает в основной контур с камерами сгорания. — in the turbofan engine a part of the air bypassed and exhausted to atmosphere after the first (two) stages of lp compressor. about half of the thrust is produced by the fan exhaust.
    -, турбовентиляторный (с дожиганием в вентиляторном контуре) — duct-burning turbofan engine
    -, турбовинтовентиляторный — (turbo) propfan engine, unducted fan engine (ufe)
    -, турбовинтовой (твд) — turboprop engine
    газотурбинный двигатель, в котором тепло превращается в кинетическую энергию реактивной струи и в механическую работу на валу двигателя, которая используется для вращения воздушного винта. — а turboprop engine is a turbine engine driving the propeller and developing an additional propulsive thrust by reaction to ejection of combustion products.
    -, "турбовинтовой" (вертолетный, с отбором мощности на вал) — turboshaft engine
    -, турбовинтовой, с толкающим винтом — pusher-turboprop engine
    -, турбопрямоточный — turbo/ram jet engine
    комбинация из турбореактивного (до м-з) и прямоточного (для больших чисел м). — combines а turbo-jet engine (for speeds up to mach 3) and ram jet engine for higher mach numbers.
    -,турбо-ракетный — turbo-rocket engine
    аналог турбопрямоточному двигателю с автономным кислородным питанием, — а turbo/ram jet engine with its own oxygen to provide combustion.
    -, турбореактивный — turbojet engine
    газотурбинный двигатель (с приводом компрессора от турбин), в котором тепло превращается только в кинетическую энергию реактивной струи. — a jet engine incorporating a turbine-driven air compressor to take in and compress the air for the combustion of fuel, the gases of combustion being used both to rotate the turbine and to create a thrust-producing jet.
    -, установленный в мотогондоле — nacelle-mounted engine
    -, установленный в подвесной мотогондоле — pod engine
    -, четырехтактный (поршневой — four-cycle engine
    за два оборота коленчатого вала происходит четыре хода поршня в каждом цилиндре, по одному такту на ход. такт 1 - впуск всасывание рабочей смеси в цилиндр), такт 2 - матке рабочей смеси, такт 3 - рабочий ход (зажигание смеси), такт 4 - выхлоп (выпуск отработанных газов из цилиндра в атмосферу) — a common type of engine which requires two revolutions of the crankshaft (four strokes of the piston) to complete the four events of (1) admission of or forcing the charged mixture of combustible gas into the cylinder, (2) compression of the charge, (3) ignition and burning of the charge, which develops pressure (power) acting on the piston and (4) exhaust or expulsion of the charge from the cylinder.
    -, шаговой (эл.) — step-servo motor
    -, электрический — electric motor
    устройство, преобразующее электрическую энергию во вращательное механическое движение. — device which converts electrical energy into rotating mechanical energy.
    - (-) энергоузел, газотурбинный (ггдэ) — turbine starter /auxiliary power unit, starter/ apu
    для запуска основн. двигателей, хол. прокрутки (стартерный режим) и привода агрегатов самолета при неработающих двигателях (режим энергоузла), имеет свой электростартер.
    в зоне д. — in the region of the engine
    выбег д. — engine run-down
    гонка д. — engine run
    данные д. — engine data
    заливка д. (пд перед запуском) — engine priming
    замена д. — engine replacement /change/
    запуск д. — engine start
    испытание д. — engine test
    мощность д. — engine power
    на входе в д. — at /in/ inlet to the engine
    обороты д. — engine speed /rpm, rpm/
    опробование д. — engine ground test
    опробование д. в полете — in-flight engine test
    опробование д. на земле — engine ground test
    останов д. (выключение) — engine shutdown
    остановка д. (отказ) — engine failure
    остановка д. (выбег) — run down
    остановка д. вслествие недостатка масла (топлива) — engine failure due to oil (fuel) starvation
    отказ д. — engine failure
    перебои в работе д. — rough engine operation
    подогрев д. — engine heating
    проба д. (на земле) — engine ground test
    прогрев д. — engine warm-up
    прокрутка д. (холодная) — engine cranking /motoring/
    работа д. — engine operation
    разгон д. — engine acceleration
    стоянка д. (период, в течение которого двигатель не работает) — engine shutdown. one hundred starts must be made of which 25 starts must be preceded by at least a two-hour engine shutdown.
    тряска д. — engine vibration
    тяга д. — engine thrust
    установка д. — engine installation
    шум д. — engine noise
    вывешивать д. с помощью лебедки — support weight of the engine by a hoist
    выводить д. на требуемые обороты % — accelerate the engine to a required speed of %
    выключать д. — shut down the engine
    глушить д. — shut down the engine
    гонять д. — run the engine
    заливать д. (пд) — prim the engine
    заменять д. — replace the engine
    запускать д. — start the engine
    запускать д. в воздухе — (re)start the engine
    испытывать д. — test the engine
    опробовать д. на земле — ground test the engine
    останавливать д. — shut down the engine
    подвешивать д. — mount the engine
    поднимать д. подъемником — hoist the engine
    подогревать д. — heat the engine
    проворачивать д. на... оборотов — turn the engine... revolutions
    прогревать д. (на оборотах...%) — warm up the engine (at a speed of... %)
    продопжать полет на (двух) д. — continue flight on (two) engines
    разгоняться на одном д. — accelerate with one engine operating
    разгоняться при неработающем критическом д. — accelerate with the critical епgine inoperative
    сбавлять (убирать) обороты (работающего) д. — decelerate the engine
    увеличивать обороты (работающего) д. — accelerate the engine
    устанавливать д. — install the engine

    Русско-английский сборник авиационно-технических терминов > двигатель

  • 6 система


    system (sys, syst)
    комплекс элементов, в котором каждый элемент работает или взаимодействует для выполнения общей функции, выполняемой данным комплексом. — any organized arrangement in which each component part acts, reacts, or interacts in accordance with an overall design inherent in the arrangement.
    -, аварийная — emergency system
    дублирующая система, предназначенная для использования в случае отказа основной, — the emergency system is used to take the place of the main system in case of the main system failure.
    -, аварийная гидравлическая (подраздел 029-20 no стандартной системе нумерации tex. документации no гост 18675-73). — auxiliary hydraulic system used to supplement or take the place of the main hydraulic system
    - аварийного освещения (подраздел 33-50) — emergency lighting system (section 33-50. emergency lighting)
    - аварийного останова (двигателя)emergency shutdown system
    - аварийного открытия замков шассиemergency landing gear uplock release system
    - аварийного покидания лаemergency-escape system
    - аварийного покидания ла (разд. 100) — ejection escape
    - аварийного покидания ла, катапультная — ejection-escape system
    - аварийного слива топлива (в полете) (подраздел 028-30) — fuel dump system, fuel jettisoning system dump used to dump fuel overboard during flight.
    - аварийного торможения (азотная)emergency air (wheel) brake system
    - аварийной и предупредительной сигнализации (сас)(master) warning and caution system
    - аварийной регистрации параметров полета (сарпп)flight data recorder system (fdr)
    - аварийной сигнализацииemergency warning system
    система выдает визуальный или звуковой сигнал для предупреждения экипажа о нарушении нормальной работы или условий. — the system provides visual and aural signals to alert the flight crew to special or urgent circumstances.
    - аварийной сигнализации и блокировкиwarning and interlock system
    - аварийной, предупредительной и уведомляющей сигнализации — (master) warning and caution (system)
    - автомата загрузки (управления ла)feel system
    - автомата сигнализации углов атаки, скольжения (и перегрузок) (ауасп) — angle-of-attack, slip and асceleration indicating/warning system
    - система торможенияanti-skid system
    система не допускает возникновения юза (заторможенных) колес шасси, независимо от воздействия летчика на тормозные педали, давление в тормозах сбрасывается при возникновении юза колеса и подается снова для обеспечения торможения при отсутствии юза. — the function of the system is such that regardless of how much the rudder toe pedals may be depressed, brake pressure will be released when excessive wheel deceleration is sensed, when system is armed, and then re-applied at a power level to provide maximum braking without skidding.
    - автомата тряски штурвала (при выходе на критический угол атаки) — stick shaker system. with stall warning test switch depressed, the stick shaker (system) should operate.
    - автомата тяги (подраздел 022-30)auto throttle system (at) auto throttle
    служит для автоматического регулирования тяги (двигателя) при заходе на посадку или уходе на второй круг. — automatically controls the position of the throttles (eпgins power) during landing/approach and go around procedures.
    - автомата усилий (в системе управления ла)automatic gain control (agc)
    - автомата усилий (загрузки управления ла)feel system
    -, автоматизированная — automated system
    -, автоматизированная навигационная — automated navigation system (ans)
    - автоматики топлива (управление и сигнализация работы топливной системы)(automatic) fuel management and indicating system
    -, автоматическая навигационная (ану) — self-contained dead reckoning system, dr system
    - автоматического выброса кислородных масок (срабатывающая при падении давления в кабине) — oxygen mask drop out system (operated by cabin low pressure)
    - автоматического выпуска парашютаautomatic parachute deploy-' ment system
    - автоматического захода на посадкуautomatic approach system
    - автоматического контроля исправности (саки)automatic test system
    - автоматического регулирования давления воздуха в гермокабине (сард)(automatic) cabin (air) pressure control system
    - автоматического регулирования двигателяautomatic compressor control system
    управляет механизацией компрессора: кпв, вна.
    - автоматического регулирования расхода топливаautomatic fuel management system
    - автоматического регулирования усилий (ару, на органах управления, напр., рв) — automatic (elevator) load feel control system
    - автоматического регулирования частоты вращения несущего винта (вертолета) — main rotor speed governor system
    - автоматического торможенияanti-skid control (system)

    anti-skid control system releases the brake pressure when it senses a locked or skidding wheel.
    - автоматического триммированияauto trim (control) system
    - автоматического уменьшения крена (аук)bank counteract system
    система включается при отказе одного двигателя (на одном крыле), отклоняя интерцептор (спойлер) на противоположном крыле. — with an engine failed, the opposite wing speller is eхtended to counteract dangerous bank.
    - автоматического управления (комплекс автопилота и системы траекторного управления) — autopilot and flight director control system, ap/fd flight control system. complete ар control with simultaneous flight director commands the pilot саn monitor.
    - автоматического управления запуском (двигателя, сауз) — engine auto start(ing) system
    - автоматического управления заходом на посадкуautomatic approach system
    - автоматического управления и регулированияautomatic control(ling) and regulating system
    - автоматического управления параллельной работой генераторовgenerator autoparalleling system

    the system senses voltages on the generator side of the generator breaker and on the bus.
    - автоматического управления (сау) — auto flight control system, ap/fd flight control system
    - автоматического управления полетом, бортовая (абсу) (раздел 22) — auto flight (control) system (afcs) auto flight
    комплекс агрегатов и элементов, обеспечивающих автематическое управление ла в полете, — those units and components which furnish а means of automatically controlling the flight of the aircraft.
    - автоматического управления посадкой (дублированная, резервная) — (dual) autoland system (dual a/l)
    - автоматического управления самолетом (относительно 3-х осей)autopilot system (ар)
    (подраздел 022-10, система автопилота) — autopilot
    часть абсу, использующая радиотехнические средства, автоматы курса, гировертикали,a также устройства принудительного ввода команд для автоматического продольного и поперечного управления ла. — that portion of the system that uses radio/radar beam, directional and vertical gyro, pitot static and manually induced inputs to the system to automatically control yaw, pitch and roll of the aircraft.
    - автоматического управления расходом топлива (автомат расхода)automatic fuel management system
    - автоматического флюгирования воздушного винтаautomatic propeller feathering system
    - автоматической загрузки (саз)automatic feel system (afs)
    - автоматической отдачи ручки (штурвала) (при выходе на критический угол атаки) — stick (or control wheel) pusher system
    - автоматической регистрации параметров полета (сарпп) — flight data recorder system, flight recorder system (fdr)
    для записи основных параметров полета при помощи самописцев. — used for recording data not related to specific system. lncludes flight recorders.
    - автоматической посадки — automatic banding /autoland/ system (autoland, a/l)
    - автоматической стабилизацииautomatic stabilization system
    - автоматической стабилизации (вертолета) относительно трех осей — three-axis autostabilization system. the helicopter is equipped with a three-axis autostabilization system with the autopilot facilities.
    -, автономная — self-contained system
    доплеровский измеритель путевой скорости и сноса является автономной системой автоматического счисления — doppler navigation system is а self-contained deadreckoning system.
    -, автономная (отдельная) — independent system
    -, автономная масляная — self-contained /independent/ oil system
    каждый двигатель имеет свою автономную масляную систему. — each engine has а self-contained (independent) oil system.
    -, автономная (автоматическая) навигационная (ану) — self-contained dead reckoning (dr) system
    - автономного запуска (двигателя)independent starting system
    бортовая система, обеспечивающая запуск двигателей при отсутствии наземных источников энергопитания, — the apu provides а means for independent starting of the engines with а ground power source unavailable.
    - автопилотаautopilot system
    (подраздел 022-10)autopilot
    -, активная — active system
    бортовая радиоэлектронная система, включающая передающее оборудование, напр., радиоответчик. — in radio and radar, a system which requires transmitting equipment, such as a beacon or transponder, to be carried in the aircraft.
    - активного демпфирования (сад)airframe (oscillation) damping system
    автоматическое демпфирование колебаний крыла и фюзеляжа для облегчения условий работы соответствующих конструктивных элементов.
    - активного ответа (сро)(active) transponder system
    - активного ответа, диспетчерекая — атс transponder system
    взаимодействует е радиола катарами увд.
    -, антенно-фидерная (афс) — antenna-feeder system
    -, астроинерциальная — stellar inertial navigation system (sins)
    -, астроинерциальная, малогабаритная (маис) — stellar inertial navigation system (sins)
    -, астронавигационная — selestial /stellar/ navigation system
    -, астроориентирная — star-tracker system
    - аэродинамических параметров (центральная)(central) air-data computer system
    (высота, вертикальная скорость, скорость, температура, число м)
    -, аэронавигационная, радиоэлектронная — avionics navigation system
    - аэродромного (электрического) питанияexternal electrical power system
    (подраздел 024-40)external power
    эл. сеть ла, служащая для подвода аэродромного питания к бортовой сети ла. — that portion of the system within the aircraft which connects external electrical power to the aircraft's electrical system.
    - (продольной) балансировки (самолета)trim system
    -, безбустерная — unassisted control system
    -, бесплатформенная инерциальная навигационная (бинс на лазерных гироскопах) — gimballes inertial navigation system (ins)
    - бесшумной настройки (рад.) — squelch control system
    - бензопитанияfuel supply system
    -, бленкерная — warning flag movement
    механизм перемещения бленкера (директорного) прибора. — то deflect the flag into or out of view.
    - ближней навигации, радиотехническая (рсбн) — short-range radio navigation system
    - боевого сброса бомбnormal bomb release system
    - блокировкиinterlock(ing) system
    - блокировки и сигнализацииinterlock and warning system
    - бпокировки самолетных систем (по обжатию амортстойки шасси)ground shift system
    для включения/выключения систем ла при обжатой амортстойке шасси, — the ground shift system activates/deactivates some aircraft systems with gear shock strut compressed.
    - блокировки управления двигателем (no реверсу)thrust reverser throttle interlock system
    - блокировки управления двигателем (no руд)engine throttle interlock system
    - ближней навигации по маякам ворvor navigation system
    - бокового канала (управления ла)roll (channel) control system
    включает вычислитель, дус, рм (элеронов).
    -, бортовая — airborne system
    любая система, установленная на борту ла. — the airborne computer system gives track guidance.
    -, бортовая (б/c) — aircraft electrical system, (from aircraft)
    питание ламп напряжением 27 в б/с. — lamps are powered by 27 vdc from aircraft.
    -, бустерная (управления) (рис. 20) — power(ed) control system
    -, бустерная гидравлическая — hydraulic power(ed) control system
    -, бустерная необратимая (рис. 20) — power-operated control system the power-operated control system is irreversible boost system.
    -, бустерная обратимая (рис. 20) — power-boost control system the power-boost control system is a reversible boost system.
    - вентиляцииventilation system
    - вентиляции подкапотного пространства (двиг.) — nacelle ventilation (and cooling) system
    - визуальной индикации глиссады (при заходе на посадку)visual approach slope indicator system (vasis)
    - включена (работает)system on
    - включена (готова к работе)system armed
    - включения готовности (самолетных) систем по обжатию амортстойкиground shift system
    - вкпючения (готовности) управления поворотом передних колес от педалей рн на земле — rudder pedal steering shift system
    - внесения изменений (в документацию)revision system
    -, внешняя (подключенная к данной системе) — coupled system
    - внутрисамолетной радиотрансляцииpassenger address and entertainment system
    (подраздел 023-30)passenger address and entertainment
    радиоаппаратура оповещения и развлечения пассажиров, — that portion of the system used to address and entertain the passengers.
    - внутрисамолетной связи при техобслуживанииground service interphone system
    -, водоканализационная — water/waste system
    (раздел 038) — water/waste
    стационарные устройства и агрегаты для водоснабжения и канализации использованной воды и отбросов, — those fixed units and components which store and deliver for use fresh water, and those fixed components which store and furnish a means for removal of water and waste.
    - водоснабжения и удаления отходов — water/waste system
    - воздухозаборника, противообледенительная — air intake ice protection system, air intake anti-icing system
    (подраздел 030-20)air intakes
    часть пос для предотвращения или удаления обледенения воздухозаборников двигателей, — that portion of the system which is used to eliminate or prevent the formation of ice in or around air intakes. includes power plant antiicing.
    -, воздушная (система, использующая воздух, отбираемый от двигателей для питания системы скв, пос, запуска двигателей) — pneumatic power system (pneu pwr sys)
    - воздушная (разд.036) — pneumatic
    - воздушного винта, противообледенительная — propeller ice protection system, propeller anti-icing system
    (подраздел 030-60) — propellers/rotors
    часть пос для предотвращения образования льда и его удаления с возд. винтов, — that portion of the system which is used to eliminate or prevent the formation of ice on propellers or rotors.
    -, воздушно-тепловая противообледенительная — hot air ice protection system
    - воздушных параметров полетаflight environment data system
    (подраздел 034-10)flight environment data
    устройства, воспринимающие параметры окружающей среды, для использования в целях навигации. включает системы динамического и статического давлений, измерения температуры наружного воздуха, вертикальной и воздушной скорости, высоты и т.п. — that portion of the system which senses environmental conditions and uses the data to influence navigation. lncludes items such as pitot, static, air temperature, rateof-climb, airspeed, high speed warning, altitude, altitude reporting, altimeter correction system, etc.
    - воздушных сигналов (свс)air data computer system (adc)
    - воздушных сигналов, цифровая — digital air data computer system (dads)
    - впрыска водыwater injection system
    (раздел 082)water injection
    система, дозирующая и подающая воду или водную смесь на вход двигателя. — those units and components which furnish, meter and inject water or water mixtures into the induction system.
    - впрыска топливаfuel injection system
    -, впускная (двигателя) — induction system
    система, состоящая из трубопроводов, коллекторов, карбюраторов, воздухозаборинков и агрегатов, для подачи топливовоздушной смеси в двигатель, — the combined system of piping manifolds, carburetor, air scoops, accessories, etc., which are used to supply the engine with a fuel mixture charge.
    - временных измененийtemporary revision system
    - всережимного предельного регулирования температуры (газов за турбиной, впрт) — all-power exhaust gas temperatore control system
    -, вспомогательная — auxiliary system
    -, вспомогательная гидравлическая (для привода второстепенных вспомогательных агрегатов и систем) — utility hydraulic system
    - встречного запуска (двигателя в воздухе), автоматическая — automatic (engine) air relight /restart/ system
    - встроенного контроля (свк) — built-in test system (bits), integral test system
    - встроенного контроля и предупреждения экипажа, обобщенная — integrated built-in test and crew warning system
    -, входящая (имеющая отношение к...) — related system. airframe and related systems.
    - выпуска парашютаparachute deployment system
    - выработки топлива (из баков)(tank) fuel usage system
    - высокого давления, топливная (от насоса-регулятора до форсунок) — high-pressure (hp) fuel system
    -, высотная (вентиляции и герметизации кабин) — air conditioning system
    (раздел 021)air conditioning
    устройства, обеспечивающие наддув, обогрев, охлаждение и увлажнение воздуха, используемого для вентиляции герметичной кабины ла. — those units and components which furnish а means of pressurizing, heating, cooling, moisture controlling and filtering the air used to ventilate the areas of the fuselage within the pressure seals.
    - высотная (жизнеобеспечения, создания искусственного климата в кабине ла) — environmental control system (ecs)
    - высотно-скоростных параметров, информационная (см. комплекс) — flight environment data system (feds)
    -, вытяжная парашютная (впс, для извлечения грузовых платформ из грузовой кабины) — extractor parachute system. то withdraw loads from aircraft cargo compartment in flight.
    -, выхлопная — exhaust system
    (раздел 078)exhaust
    для отвода выходящих газов двигателя в атмосферу, — those units and components which direct the engine exhaust gases overboard.
    - вычисления отношения давлений двигателяengine pressure ratio computer system
    служит для определения режима (тяги) двигателя, — the system is used to determine engine rating for all modes of operation.
    - географических координатgeographic(al) coordinate system
    - геодезических координатgeodetic coordinate system
    - герметизации (кабин)pressurization system
    - герметизации (уплотнения дверей, люков) — (door) sealing (system)
    - герметизации, обогрева и вентиляции (кабин ла) — air conditioning system
    -, гидравлическая (включающая источники и потребители) — hydraulic system
    -, гидравлическая (включающая источники и регуляторы давления) — hydraulic power system
    (раздел 029)hydraulic power
    агрегаты (насосы, регуляторы, краны), обеспечивающие подачу рабочей жидкости под давлением к общей точке (коллектору) для распределения по др. системам, — units and components (pumps, regulators, lines, valves) which furnish hydraulic fluid under pressure to а common point (manifold) for redistribution to other systems.
    - nо. 1, гидравлическая (надпись) — no. 1 hyd sys(t)
    -, гидравлическая аварийная — emergency hydraulic system
    -, гидравлическая аварийная (вспомогательная, дублирующая, резервная) — auxiliary hydraulic system
    -, гидравлическая вспомогательная (дублирующая, резервная) — auxiliary hydraulic system
    -, гидравлическая вспомогательная (для привода вспомогательных агрегатов, систем) — utility hydraulic system
    -, гидравлическая дублирующая (авар., вспомогат., резервн.) — auxiliary hydraulic system
    -, гидравлическая, общая — main hydraulic system
    -, гироинерциальная (с гироплатформой и акселерометрами) — inertial navigation system (ins)
    -, гироинерциальная, малогабаритная (мис) — inertial navigation system (ins)
    -, гироинерциальная с дублированием курса и вертикали — inertial navigation system with attitude and heading reference
    -, гироскопическая — gyro system
    - громкоговорящего оповещенияpassenger address system
    - дальней навигацииlong-range navigation system
    - дальней навигации, радиотехническая (омега) — omega navigation system, omega automatic computerized earth-oriented navigation system
    -, дапьномерная (дме) — distance measuring system (dme)
    - двигателя, противообледенительная — engine anti-icing system
    - двигателя, противопожарная — engine fire extinguishing system
    - двигателя, топливная — engine fuel system
    система, включающая агрегаты и трубопроводы за пожарным (перекрывным) краном. — the system consists of those components downstream of the fuel fire shut-off valve.
    - двойного зажиганияdual ignition system

    an ignition system utilizing two separate and duplicate systems.
    -, двухотказная (сохраняющая работоспособность при одиночном отказе) — fail-operative system
    -, двухочередная противопожарная — two discharge /"two-shot"/ fire extinguishing system
    -, динамическая (манометра) — pressure system
    -, динамическая (приемников возд. давлений, пвд) — pitot (pressure) system
    -, динамическая (пвд), аварийная — auxiliary pitot system (aux pitot)
    -, динамическая (пвд), основная — main pitot system
    - динамического давления рабочего, основного (переключатепь) — normal pitot pressure system (norm pitot)
    -, динамического давления, резервного (переключатель) — auxiliary pitot pressure system (aux pitot)
    -, директорная — flight director (fd) system
    является пилотажно-навигационной системой, обеспечивающей летчиков визуальной индикацией положения самолета в пространстве и курсовой информацией для полета по заданной траектории. — fd system is a navigation aid to assist pilots by presenting visually accurate aircraft attitude and heading information to follow the preselected flight path.
    - директорного управления (сду) — flight director (system), (fd)
    - директорных пилотажных приборовflight director (system)
    система включает пилотажный командный прибор, плановый навигационный прибор, вычислительное устройство, блок сравнения, гировертикаль. — flight director (system) incorporates flight director indicator, course indicator, computer, comparator system, vertical reference gyro unit.
    - дистанционного управленияremote control system
    - для опрыскиванияspraying system
    -, доплеровская — doppler system
    - доплеровская, навигационная — doppler (navigation) system
    система, использующая эффект доплера для получения навигационной информации. — in radar, any system utilizing the doppler effect for obtaining information.
    - доплеровского измерителя (дисс) — doppler navigation /computer/ system (dop)
    система использует зависимость частоты отраженного сигнала от скорости источника излучения (эффект доплеpa) и позволяет определить путевую скорость и угол сноса (рис. 82). — the system provides outputs of velocity along and across heading to а navigation сошputer. ground speed and drift information is computed and displayed.
    - дренажа (слива)drain(age) system
    - дренажа (сообщения с атмосферой)vent system
    - дренажа (слива) топливаfuel drain system
    - дренажа (слива) топливных коллекторовfuel manifold drain system
    -, дренажная (слива) — drainage system
    -, дренажная (сообщения с атмосферой) — vent system
    -, дренажная (двигателя) — engine drainage system
    дренажные устройства двигателя должны располагаться таким образом, чтобы отводимые жидкости (топливо, масло) не создавали опасности возникновения пожара. — the drainage means must be arranged so that no discharged fluid will cause a fire hazard.
    -, дублирующая — alternate system
    общий термин, подразумевающий как вторую равноценную систему, так и систему, способную выполнять ограниченные функции в случае отказа основной. — each alternate system may be а duplicate power portion or а manually operated mechanical system.
    -, дублирующая (вторая равноценная система, напр., пилотажных приборов) — duplicate /duplicating/ system
    система включает пилотажные приборы на рабочем месте летчика и аналогичные приборы на рабочих местах др. членов экипажа, — duplicate instrument system incorporates flight instruments for the pilot, and the same instruments duplicated at other flight crew stations.
    -, дублирующая аварийная — duplicating emergency system
    -, дублирующая (аварийная) гидравлическая — auxiliary hydraulic system
    - единицsystem of units
    - единиц сгс (сантиметр, грамм, секунда) — cgs (centimeter-gram-second) system of units
    система единиц для механич., электрических, магнитных и акустических величин. основн. единицы: сантиметр (ед. длины), грамм (ед. массы) и секунда (ед. времени). — а metric measuring system, sometimes known as the absolute system of measurement where cgs (centimetergram-second) are respectivelу the length units, the weight units, and the time units.
    - (управления), жесткая (при помощи тяг) — push-pull (rod) control system
    - жизнеобеспечения (искуственного климата в кабинах ла)environmental control system (ecs)
    - забора воздухаair induction system
    система забора воздуха должна обеспечивать потребное количество воздуха, подаваемого в двигатель на всех режимах работы. — the air induction system for each engine must supply air required by that engine under each operating condition.
    - загрузки (а системе управления)(artificial) feel system
    - зажиганияignition system
    (раздел 074)ignition
    система, обеспечивающая зажигание топлива или рабочей смеси в камерах сгорания поршневых или газотурбинных двигателей, а также в форсажных камерах гтд. — those units and components which generate, control, furnish, or distribute an electriсаl current to ignite the fuel air mixture in the cylinders of reciprocating engines or in the combustion chambers or thrust augmentors of turbine engines.
    - зажигания продолжительногo режима работыcontinuous ignition system
    работает в полете для предотвращения срыва пламени в камерах сгорания при неблагоприятных условиях. — used in flight to prevent flameout during adverse ambient conditions.
    - зажигания, пусковая (или повторно-кратковременного режима работы) — starting (or intermittent) ignition system

    used in all engine starts, including air relighting.
    - зажигания, экранированная — shielded ignition system
    система, элементы которой заключены в металлические оболочки-экраны для уменьшения радиопомех, создаваемых при работе системы. — complete enclosure of all parts, of the ignition system (spark plugs, wires, magnetos, etc.) in suitable interconnected and grounded metal housings to minimize radio interference.
    - заливки (заливочная)priming system
    устройство для впрыска легкого топлива в цилиндры или патрубки пд для облегчения его запуска. — prior to starting the engine make several strokes of the priming pump plunger to prime the engine.
    -, замкнутая — closed (circuit) system
    в производственный вес nycтого самолета включается только вес жидкостей, содержащихся в замкнутых системах. — the manufacturerss emply weight includes only those fluids contained in closed systems.
    -, замкнутая масляная — closed (circuit) oil system
    - записиrecording system
    - заправки топливом — fueling /refueling/ system
    - заправки топливом под давлениемpressure fueling system
    - заправки топливом, централизованная (под давлением) — single point pressure fueling system
    автоматическая и одновременная заправка всех топливных баков осуществляется посредством системы централизованной заправки. — automatic and simultaneous pressure fueling of all fuel tanks is accomplished by the single point pressure fueling system.
    - запускаstarting system
    (раздел 080)starting
    совокупность деталей и агрегатов силовой установки, служащих для запуска двигателя. — those units, components and associated systems used for starting the engine. includes electrical, inertia, air or other starter systems.
    - запуска, воздушная — air /pneumatic/ starting system
    - запуска двигателяengine starting system
    - запуска двигателя в воздухеengine flight restart system
    - захода на посадку, автоматическая — automatic approach system
    - защитыprotection system
    - защиты воздухозаборника от (попадания) посторонних предметовair intake debris protection system
    - защиты воздухозаборников (двиг.), струйная — engine air intake blowaway jet system
    - защиты лобовых стекол от запотевания — windshield demisting /defogging/system
    - защиты от обледенения и атмосферных осадковice and rain protection system
    (раздел 030)ice and rain protection
    система для предотвращения образования или удаления льда и удаления атмосферных осадков с различных частей ла. — those units and components which provide а means of preventing or disposing of formation of ice and rain on various parts of the aircraft.
    - защиты от опасных (завыщенных оборотов)overspeed protection system
    - защиты стекол от запотевания — window demisting /defogging/ system
    - защиты турбины (несущего) винта от раскрутки (сзтв)main rotor overspeed protection system
    - звуковой информации о высоте полета (автоматическая)(automatic) altitude reporting system
    - избирательного вызова (на связь)selective call(ing) system
    - (внесения) изменений (в документацию)revision system
    - измерения (количества) масла (сим)oil quantity indicating system (oil qty)
    - измерения массы и центровки (симц) — on-board weight /mass/ and balance system
    для определения массы (в кг) и положения центра тяжести (в % сах) при нахождении ла на земле. — the system measures the aircraft gross weight (in kg) and computes cg (in % mac) when the aircraft is on the ground.
    - измерения расхода топлива (ситр)fuel flowmeter system
    при наличии системы измерения расхода топлива, у каждого летчика должен быть предусмотрен канал перепуска. — if а fuel flowmeter system is installed, each metering component must have a means for bypassing the fuel supply.
    - измерения расхода топлива (и суммарного запаса топлива)fuel flow and quantity indicating system
    - измерения температуры (выходящих) газов за турбиной (дв.) — exhaust /turbine/ gas temperature indicating /measuring/ system (egt ind, tgt ind)

    egt is measured by thermocouples.
    - измерения углов атаки и перегрузок (автомат ауасп) — angle of attack and acceleration indicating/warning system
    - измерения уровня масла (сим)oil quantity indicating system
    - измерения частоты вращенияtachometer system
    - имитации автоматического управления (исау)auto flight control simulation system
    - имитации видимости (сив)visibility simulation system
    шторка различной прозрачности для имитации метеоминимумов.
    - имитации визуальной индикацииvisual display simulation system
    - имитации усилий (на органах управления)(artificial) feel system
    - индикации — indication /indicating/ system
    - индикации давления масла (топлива)oil (fuel) pressure indication system
    включает датчики и указатель давления. — includes pressure transmitters and indicators.
    - индикации (оборотов)(rpm) indicating system
    - индикации и контроля пространственного положения лаattitude indicating and monitoring system
    - индикации температуры маслаoil temperature indication system
    - индикации угла атакиangle-of-attack (indicating) system
    - инертной средыinert gas system
    -, инерциальная навигационная — inertial navigation system (ins)
    автономная навигационная система, не связанная с наземными навигационными станциями и радиолокационными системами самолета. система воспринимает и измеряет ускорения действующие на ла. служит для выдачи сигналов места ла, путевой скорости, курса (азимута) и вертикали. — ins provides navigation on self-contained basis, i.e. it do not require any ground based aids, nor relays on radio and/or radar observation from the aircraft. the fundamental principle involved is ability of the system to sense and measure aircraft acceleration.
    - инструментальной посадки (илс/сп) — instrument landing system (ils/cp)
    - (речевой) информации (cообщений и команд)voice warning system
    - информации о безопасности полетаaviation safety reporting system (asrs)
    определяет фактическую или потенциальную опасную ситуацию. — identifies real or potential hazards.
    - (речевой) информации об отказах и неисправностях (магнитофонная сист.) — voice warning system, malfunction reporting system
    - искусственного климата (в кабине ла) (система гepметизации, отопления, вентиляции) — environmental control system (ecs)
    -, исполнительная — actuating /servo/ system
    механическая система, вырабатывающая энергию для привода др. механизмов или систем. — а mechanical system that supplies and transmits energy for operation of other mechanisms or systems.
    - кабинной индикации и сигнализации — cockpit display/warning system
    -, канализационная — waste (disposal) system
    (подраздел 038-30)waste disposal
    система отвода и сброс использованной воды и отбросов. включает умывальники, туалеты (унитазы), систему промывки и смыва и т.п. — the system used for disposal of water and waste. includes wash basins, water closets, flushing system, etc.
    -, каскадная (гтд) — rotor spool
    спарка компрессора и турбины. — compressor and turbine assembly.
    -, кислородная — oxygen system
    (раздел 035)oxygen
    система, обеспечивающая хранение, регулирование и подачу кислорода пассажирам и членам экипажа. — those units and components which store, regulate, and deliver oxygen to the passengers and crew.
    - кислородной подпитки двигателяengine oxygen supply system
    - кольцевания (топливных баков, в магистрали за подкачивающими насосами) — fuel cross-feed system (х-feed)
    - коммутацииswitching system
    -, комплексная — integrated system
    -, комплексная навигационная (состоящая из инерциальной, доплеровской и радиолокационной систем) — integral inertial radar navigation system
    - коммутации и автоматического регулирования громкости — audio integrating system, audio system
    оборудование для регулирования уровня звука и подключения выхода связных и навигационных приемников на наушники и громкоговорители членов экипажа, а также выхода их микрофонов на связные передатчики. — controls the communications and navigation receivers into the flight crew headphones and speakers, and the output of the flight crew microphones into communications transmitters. includes audio selector control panels.
    -, комплексная навигационная (навигационный комплекс) — integrated navigation system (intg nav)
    - комплексная пилотажная (пилотажный комплекс)integrated flight system (intg flt sys)
    состоит из двух комплектов систем директорного управления, включающих кпп, пhп, эвм, приборный усилитель. — the integrated flight system incorporates two independent flight director systems each consisting of fdi, hsi, steering computer and instrument amplifier.
    - комплексной индикацииmulti-function display system (mfds)
    - кондиционирования воздуха (скв)air conditioning system (air cond)
    (раздел 021)air conditioning
    система, обеспечивающая наддув, обогрев, охлаждение, регулирование влажности и очистку воздуха для вентиляции помещений и отсеков ла, находящихся в пределах герметической кабины. — those units and components which furnish a means of pressurizing, heating, cooling, moisture controlling, filtering and treating the air used to ventilate the areas of the fuselage within the pressure seals.
    - контроля (автоматического управления заходом на посадку)monitoring system
    (подраздел 022-40)system monitor
    часть системы автоматического управления, с помощью которой осуществляется контроль режима полета ла при заходе на посадку и при посадке. — that portion of the (auto flight) system that monitors the flight of the aircraft during approach and landing.
    - контроля вибрации (двиг.), бортовая — airborne vibration monitor /indicating/ (avm) system
    - контроля, встроенная (вск) — built-in test system (bit)
    - контроля и индикации работы двигателя — engine monitoring and alert/warning system
    - контроля и индикации, централизованная — master monitor display system (mmd)
    - контроля мощности двигателя (подраздел 077-10)power
    - контроля расхода топлива (расходомеры и средства индикации и сигнализации) — fuel flowmeter and indicating system
    - контроля состояния систем и предупреждающей сигнализации, многофункциональная (комплексная) — multi-function display system/flight warning system (mfds/fws)
    - контроля температуры двигателя (подраздел 77-20)temperature
    - координат — coordinate system /frame/, coordinates, axes, system of coordinates, system of coordinates axes
    система взаимноперпендикулярных осей для определения положения точки в пространстве или на плоскости. — any scheme for the unique identification of each point of а given continuum.
    - координат, главноортодромическая — primary great circle spherical coordinate system
    - координат, небесная — celestial coordinate system
    - координат, неподвижная — fixed coordinate system
    - координат, ортодромическая — transverse-pole spherical coordinate system
    сферическая система координат с произвольным расположением полюса. ортодромические широта и долгота координаты точки. — in this system the poles are deliberately displaced from the geographic north and south poles.
    - координат, ортодромическая, прямоугольная (применяемая при счислении пути с условной плоскостностью земли) — transverse-pole rectangular coordinate system
    - координат, полярная — polar coordinate system
    -, координат, поточная — wind axes
    - координат, прямоугольная — rectangular coordinate system
    - координат, прямоугольная, центр которой связан с объектом (условная с. координат) — rectangular aircraft-centered /vehicle-centered/ coordinate system
    - координат (ла), связанная — body axes

    а system of coordinate axes fixed in the aircraft.
    - координат, связанная с землей — earth axes
    система служит для определения положения самолета и образована тремя взаимноперпендикулярными осями с началом в центре земли: одна ось совпадает с осью вращения земли, вторая - линия пересечения плоскостей экватора и гринвичского меридиана, третья - перпендикулярна первым двум. — set of mutually perpendicular reference axes established with the upright axis (z-axis) pointing to the center of the earth used in describing the position of aircraft in flight. the earth axes may remain fixed or may move with the aircraft.
    - координат (ла), скоростная — wind axes

    а system of coordinate axes with the origin in the aircraft and the direction fixed by that of the relative airflow.
    - координат, сферическая — spherical coordinate system, spherical coordinates, system of spherical coordinates
    - координат, условная (картографическая) — map-grid coordinates
    цвм вычисляет место ла в условных (картографических координатах). — the navigation computer calculates а/с position in шарgrid coordinates
    - координат, условная (ортодромическая, с произвольным полюсом) (рис. 111) — transverse-pole coordinate system
    - координат, частноортодромическая — navigation leg coordinate system
    - коротковолновой связиhf communication system
    - криволинейных координатsystem of curvelinear coordinates
    - курса и вертикали, базовая (бскв) — (integrated) attitude and heading reference system (ahrs)
    для вычисления курса ла и выдачи сигналов курса в др. системы. включает два комплекта инерциальных курсовертикалей (икв) и индукционные датчики (ид). — incorporates two vertical/directional gyro unit (v/d gyro) and flux gates.
    -, курсовая (кс) — compass system (cs)

    Русско-английский сборник авиационно-технических терминов > система

  • 7 время арретирования


    gaging time
    - в полете (период нахождения в воздухе после взлета)elapsed time
    - (продолжительность) воздействия (напр. на систему) — actuation duration total time from the first operational movement of the switch till the last intended action is completed.
    - включения (период работы)time-on
    - возможного пользования кислородомoxygen duration
    - восстановления гироскопаgyro erection time
    - восстановление гироскопа в рабочее положениеtime required for the gyro to reach correct settling position
    - восстановления гироскопа из завалаtime required for the gyro to return from tilt
    -, всемирное — universal time
    - выбега (двигателя, винта) — run-down time
    время, потребное для полной остановки двигателя или воздушного винта с момента выключения двигателя. — braking system is used to decrease run-down time of stop propeller rotation during engine power-off conditions.
    - выделения светила (звезды телескопом) — star-acquisition time two factors affect the staracquisition time, initial condition error and detection rate of the telescope.
    - выдержки (подачи сигнала)delay time
    - выдержки (при термообработке)period of soaking
    - выключения (перерыва в работе), — time-off
    - вылета — departure time, time of departure
    время в момент отрыва самолета при взлете — the time at which an aircraft becomes airborne.
    - вылета, планируемое (по расписанию) — scheduled departure time
    - вылета, расчетное — estimated time of departure (etd).
    - выпуска шасси (от аварийной гидросистемы)(auxiliary hydraulic system) landing gear extension time
    - выхода на ппм, расчетное — estimated time to wpt, estimated time of arrival at wpt (eta)
    - готовности (время прогрева электронного оборудования)warm-up time
    -, гринвичское (среднее) — greenwich mean time (gmt)
    местное гражданское время на гринвичском меридиане — local mean time at the greenwich meridian.
    - готовности (инерциальной системы)status ready time
    - готовности (начать к-л, действие) — time required (for something) to be ready to (start)
    - действительного нахождения в воздухеactual airborne time
    -, декретное — legal time
    - (необходимое) для ремонта агрегатов (и возвращения их в эксплуатацию)turn around time needed for overhaul of components
    - дохода картушки компаса (после отклонения от первоначального положения) — time required for compass card to go back to the same position (after magnet is taken away)
    - задержки включения (выключения) коррекции (выкпючатепем коррекции)erection cut-in (cut-out) delay time
    - замедления взрывателя (дистанционной трубки)fuze action delay time primer action delay time
    - заправки (время, потребное на заправку топливом) — fueling time
    - звездное (на гринвиче в нуль часов всемирного времени)celestial time (at greenwich)
    - коррекции (при согласовании гироагрегата) — slaving time time required to slave the directional gyro.
    - московское, декретное — moscow legal time
    - на заправку топливомfueling time
    - (потребное для) наземного техобслуживанияmaintenance ground time
    - набора высоты... м — time to climb to m(eters)
    - напета (в часах)flight time (in flight hrs)
    - налета за (данный) деньflying time today
    - напета, общее — total flying time
    - наполнения (парашюта)inflation time
    интервал между окончанием выхода парашюта и полным наполнением купола. — interval between the end of deployment and full inflation of the canopy.
    - наработки (в моточасах)total engine hours
    - наработки (по указателю наработки прибора) — elapsed time, total time
    - наработки между отказами, среднее — mean time between failure (mtbf)
    - нахождение (искомой) звезды(target) star-acquisition time
    - нахождения (ла) на плавуflotation time
    время, в течение которого самолет сохраняет плавучесть после аварийной посадки на воду. — the flotation time of the airplane shall allow the occupants to leave the airplane and enter the life-rats.
    - нахождения ла в эксплуатации ("возраст") — aircraft age
    - нахождения ла на земле (стоянке)aircraft ground time
    - нахождения ла на земле (из-за неготовности к эксплуатации)aircraft downtime
    - нахождения ла на земле (располагаемое для технического обслуживанияaircraft ground time available for maintenance
    - непрерывной работы двигателя (на к-л режиме), максимально допустимое — engine continuous operation time limit
    - обкатки двигателя (ид)engine run-in time
    -, общее — total time
    - опробования двигателяengine ground test time
    -, остальное — the rest of the time
    - от снятия стояночных колодо их установки — block-to-block time, chock-tochock time
    - отказа питанияtime of power failure
    - переходного процесса по напряжениюtransient voltage time
    - подготовки к очередному рейсуturn-around time
    - поиска звезды (телескопом) — star-aquisition time, star-search time

    time required to find the target star.
    - полета (продолжительность полета от взлета до посадки — flying /trip/ time the period between departure time and arrival time.
    - полета до (заданного) пунктаtime-to-go (to point)
    - лепета до ппм (система "омега") — estimated time enroute (ete), estimated time to to wpt
    - полета до ппм, оставшееся — estimated time enroute to to waypoint (ete)
    - лопата от текущего мс до любого ппм — estimated time enroute (ete) from aircraft present position to any waypoint.
    - полета по приборамinstrument flight time
    время в течение которого самопет пилотируется исключительно по бортовым приборам. — time during which a pilot is piloting an aircraft solely by reference to instruments and without external reference points.
    - полета, текущее — elapsed time
    -, полетное (по бортчасам) — elapsed time
    время, прошедшее от момента взлета самолета.
    -, полное (графа формуляра) — total time
    - потребное для возвращения (агрегата, изделий) в эксплуатацию после ремонта — turn around time what is the turn around time needed for the engine overhaui.
    - пребывания ла в воздухе, максимальное — maximum inflight time maximum length of time an aircraft can remain in the air.
    - при наборе высотыtime to climb
    - прибытия — arrival time, time of arrival
    время в момент касания самолетом впп при посадке. — the time at which an aircraft touches down.
    - прибытия в (следующий) ппмestimated time of arrival at to waypoint (eta)
    - прибытия, расчетное — estimated time of arrival (eta)
    - приемистостиacceleration time
    время, потребное для вывода двигателя с режима малого на режим большого газа. — acceleration time is the period required to come from idle to full power.
    - прилета (прибытия), расчетное — estimated time of arrival (eta)
    - пролета (к-л пункта)flyover time
    - пропета контрольного пункта маршрута (ким)time of checkpoint passage
    - пролета кпм, расчетное — estimated time of checkpoint
    - пропета ппм (система "омега") — estimated time of arrival at next waypoint (eta), estimated time of arrival at "to" wpt
    - пролета ппм по гринвичуestimated time of arrival (at next waypoint) in gmt
    - простоя (неготовности ла к эксплуатации)downtime
    - разворота (на угол 10о)time to turn (through 10о)
    - разгона ротора гироскопаtime required for the gyro rotor to come up to full speed
    - раскрытия (парашюта)(parachute) opening time
    интервал между началом выпуска парашюта и полным наполнением купола. — interval between the beginning of deployment and full inflation of the canopy.
    -, расчетное — estimated time (et)
    - реакции (летчика)reaction time
    -, рейсовое — block time
    время с момента уборки тормозных колодок перед выруливанием на вцп до момента установки самолета на стоянку после полета. — the period from the time the chocks are withdrawn, brakes released or moorings dropped, to the time of return to rest, or taking up of moorings after flight.
    рейсовое время включает время на набор высоты, крейсерский полет, снижение и маневрирование перед взлетом и после посадки. — block time includes the time for climb, cruise and descent plus time for maneuver before climb and after descent.
    -, рейсовое (в часах) — block hours
    - с момента выставки (инерциальной системы)time since alignment
    - согласования (гироагрегата)slaving time
    - срабатывания (прибора)response time
    - срабатывания репе — relay.operate time
    -, точное — exact time
    -, уборки шасси — landing gear retraction time
    - успокоение картушки компасаtime required for the compass card to settle
    - (вылета), фактическое — actual time (of departure)
    если позволяет в. — if /when/ time permits
    за одинаковые отрезки в. — in equal lengths of time
    отметка в. (процесс) — time-marking
    отставание по в. — time lag
    последовательность во в. — time sequence
    постоянная в. — time constant
    промежуток в. — time interval
    разница во в. — time difference
    расчет в. полета — time-of-flight calculation
    изменяться со в. — vary with time

    Русско-английский сборник авиационно-технических терминов > время арретирования

  • 8 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 9 круг, абразивный


    abrasive wheel
    -, азимутальный (пеленгатора) — bearing plate (of sighting compass)
    -, большой (ортодромия) — great circle
    круг, получаемый сечением земного шара плоскостью, проходящей через заданные точки и центр земли (рис. ill), — any circle indicated on the surface of the earth by a plane surface which passes through the center of the sphere.
    -, второй (маневр) — go-around (ga)
    прекращение неудавшегося захода на посадку и набор высоты для выполнения повторного захода. — if safe landing cannot be made, landing must be aborted and go-around ехecuted.
    -, девиационный — deviation clock,compass rose
    специальная круглая площадка на аэродроме для списания девиации компасов самолета. по периметру круга нанесены деления через 15°, с началом отсчета от направления на северный магнитный полюс. — a circular base having its circumference divided into 15 deg. intervals starting at magnetic north. it is used to swing an aircraft for compass compensation.
    - долгот — parallel /circle/ of latitude
    -, левый (над аэродромом) (рис. 117) — left-hand traffic circuit (over aerodrome)
    - малый (навигационный)small circle
    - полировальный, войлочный (или кожаный) — felt (or leather) bob
    - равных склоненийparallel of declination
    -, часовой (астр.) — hour circle
    -, шлифовальный — grinding wheel
    на втором к. — on go-around
    полет no к. — circuit flying
    полет no замкнутому к. — closed-circuit flight
    уход на второй н. — go-around
    выполнять уход на второй к. — execute go-around, go around
    принимать решение уходить (об уходе) на второй к. — make decision to go-around
    уходить на второй к. — go around, execute go-around

    Русско-английский сборник авиационно-технических терминов > круг, абразивный

  • 10 дистанционное техническое обслуживание

    1. remote sevice
    2. remote maintenance

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Русско-английский словарь нормативно-технической терминологии > дистанционное техническое обслуживание

  • 11 ходить

    гл.
    1. to go; 2. to walk; 3. to go/to travel on foot; 4. to stride; 5. to march; 6. to pace; 7. to stroll; 8. to amble; 9. to saunter; 10. to trudge; 11. to plod; 12. to hobble; 13. to shuffle; 14. to shamble; 15. to tiptoe; 16. to sneak; 17. to stagger; 18. to stumble; 19. to lurch; 20. to swagger; 21. to strut; 22. to wander; 23. to prowl; 24. to wade; 25. to pick one's way; 26. to edge
    Русский глагол ходить используется в разных ситуациях; относится к движению людей, работе механизмов, внешнему виду человека. Русский глагол ходить не уточняет, как осуществляется движение и при каких сопутствующих обстоятельствах. В английском языке эти аспекты уточняются значениями отдельных слов. В русском языке любые уточнения способов движения передаются, как правило, словосочетаниями с глаголом ходить.
    1. to go — (как и русский глагол ходить, английский глагол to go многозначен и относится как к живым существам, так и к неодушевленным предметам, машинам и механизмам): a) ходить, ездить, передвигаться (предполагает передвижение живых существ любыми способами — ногами, транспортными средствами и т. п.; обычно сопровождается определениями: как, когда, куда, каким образом): to go in pairs (arm-in-arm) — ходить парами (под руку); to go shopping — ходить за покупками; to go to the theatre (to the cinema, to concerts) — ходить в театр (в кино, на концерты); to go there right now — пойти туда сейчас же; to go by train — ездить поездом; to go by boat — плыть пароходом; to go by air — лететь самолетом; to go out to work — ходить на работу/ ходить на службу; to go swimming (skiing) — ходить плавать/купаться (ходить на лыжах) In summer he goes for a swim in all sorts of weather. — Летом он ходит купаться в любую погоду. On Saturday we usually go shopping. — По субботам мы обычно ходим за покупками. We don't often go to museums. — Мы редко ходим в музеи. My father liked to go into the mountains and he often took us kids with him. — Отец любил ходить в горы и часто брал нас, детей, с собой. b) ходить, функционировать, работать (описывает функционирование неодушевленных предметов, главным образом машин и механизмов): This watch doesn't go. — Эти часы не ходят. The bus goes there twice a day. — Автобус ходит туда два раза в день. Cars can't go along such roads. — Машины по таким дорогам не ездят./ Машины по таким дорогам ездить не могут. The train went at full speed. — Поезд шел полным ходом. Buses don't go along these streets. — По этим улицам автобусы не ходят/не ездят.
    2. to walk — ходить, гулять, прогуливаться, ходить пешком, прохаживаться, переступать ногами ( двигаться вперед с обычной скоростью): Lena and Ann always walk to school together. — Лена и Аня всегда идут в школу вместе. Shall we walk or take a taxi? — Пойдем пешком или возьмем такси? Ben learned to walk at ten months. — Бен научился ходить, когда ему было десять месяцев./Бен пошел, когда ему было десять месяцев. On the final day we walked over twenty miles. — В последний день мы прошли более двадцати миль. We walked around the market for a while, before going to the beach. — Мы немного походили по рынку прежде чем пойти на пляж. I keep seeing these two strange men walking around, I'm sure they are up to something. — Я все время вижу этих двух незнакомцев, которые ходят вокруг, я уверен, они что-то замышляют. The doctor told Sam to walk as much as possible — it was good for his heart. — Доктор посоветовал Сэму побольше ходить — это полезно для его сердца./Доктор посоветовал Сэму побольше двигаться — ему это полезно для сердца. Ellyn is up at six every morning to walk along the beach. — Эллин встает в шесть часов каждое утро, чтобы походить/погулять по пляжу. I like to go walking in the woods, just to breathe the air. — Я люблю ходить по лесу, просто чтобы подышать свежим воздухом. We are going to walk for a while before dinner. — Мы пошли до обеда немного погулять.
    3. to go/to travel on foot — ходить пешком: It is not far, it will take you about ten minutes on foot. — Это недалеко, всего минут десять пешком. They planned to travel partly by boat and the rest of the way on foot. — Они планировали проплыть на лодке часть пути, а остальной путь проделать пешком.
    4. to stride — шагать, ходить большими шагами (двигаться быстро, особенно если вы чувствуете неуверенность, сердитесь или торопитесь): Не strode along the beach. — Он шагал по пляжу./Он вышагивал по пляжу. Не strode on/off. — Он зашагал дальше. The interviewer strode confidently towards me and shook my hand. — Журналист уверенно шагнул ко мне и протянул руку, здороваясь со мной. I saw Max striding angrily away. — Я видел, как Макс в гневе зашагал прочь. She strode quickly and purposefully into the room, with her head upright. — С высоко поднятой головой и явным намерением что-то сделать она быстро шагнула/вошла в комнату.
    5. to march — маршировать, ходить строевым шагом, двигаться решительно, двигаться твердым шагом (двигаться быстро, уверенными шагами, особенно под влиянием гнева или решимости что-либо сделать): Sheila marched into the office to demand an apology. — Шейла уверенно вошла в контору потребовать, чтобы перед ней извинились. «I'll never forgive you for this», Margosaid marching off. — «Я тебе этого никогда не прощу», — сказала Марго и вышла. The soldiers marched through the town in two straight columns. — Солдаты прошли строем через город двумя стройными колоннами./Соддаты промаршировали через городдвумя стройными колоннами. At the army training camp the new recruits will learn how to march and shoot. — В военно-учебных лагерях новобранцы научатся ходить строем и стрелять. The prisoners were made to march around the court yard. — Узников заставляли маршировать по тюремному двору.
    6. to pace — ходить взад и вперед (обычно в небольшом пространстве, особенно если вы нервничаете, раздражены или рассержены): Sheila paced back and forth along the corridor, waiting for the doctor to come back. — В ожидании возвращения врача Шейла нервно ходила взад и вперед по коридору. «We are going to be late», Jordan said irritably pacing up and down the room. — «Мы опаздываем», — раздраженно сказал Джордан, меряя шагами комнату./«Мы опаздываем», — сказал Джордан, шагая взад и вперед по комнате. A lion paced up and down the cage. — Лев ходил по клетке взад и вперед.
    7. to stroll — прогуливаться ( ходить ради удовольствия): 1 strolled along the beach with the warm sun on my face. — Я медленно прогуливался по пляжу, теплое солнце светило мне в лицо. The young couple strolled through the park, arm-in-arm. — Молодая пара под руку прогуливалась по парку. In the evening Madrid fills with people strolling unhurridly from bar to bar. — По вечерам Мадрид наполняют гуляющие пары, которые не спеша переходят от бара к бару.
    8. to amble — двигаться мелкими шагами, семенить; идти неторопливым шагом, брести, бесцельно бродить; идти иноходью ( о лошади): An old man appeared from behind the house and ambled across the yard. — Из-за дома показался старик, который бесцельно бродил по двору. We ambled around the town. — Мы бродили по городу. One of the horses, the white one, slowly ambled toward me. — Одна из лошадей — белая — иноходью приблизилась ко мне.
    9. to saunter — прогуливаться, прохаживаться, фланировать (ходить с гордым видом, что нередко у других вызывает раздражение): We sauntered up and down the street. — Мы прогуливались/прохаживались вверх и вниз по улице. «Shouldn't you be in class?» — the teacher asked the girls who were sauntering down the corridor. — «Вы разве не должны быть в классе?» — спросил преподаватель девочек, спокойно прогуливающихся по коридору. I sauntered into the garden, where some friends were chatting near the fire. — Я медленно прошел в сад, где у костра болтали несколько моих друзей. As usual, he sauntered into the class twenty minutes late. — Он с независимым видом вошел в класс как обычно с двадцатиминутным опозданием.
    10. to trudge — устало ходить, тяжело ступать, тащиться (тяжело двигаться медленными шагами, потому что вы устали): Mother walked for four miles to the nearest store trudging back home with her bag of groceries. — Мать ходила в магазин в четырех милях от дома, а потом устало тащилась домой с тяжелой сумкой продуктов. Trudging through the sand was exhausting. — Тащиться по песку было тяжело. He trudged the streets all day. — Он таскался по улицам целый день. Не trudged wearily up the hill. — Он устало тащился в гору.
    11. to plod — брести ( с трудом), тащиться, медленно плестись, устало плестись (еле-еле передвигая ноги из-за усталости или потому что вы несете что-либо тяжелое): Не plodded wearily home. — Он устало плелся домой. The travelers plodded through deep snow at the side of the railroad. — Путешественники устало плелись по глубокому снегу вдоль железнодорожного полотна./Путешественники медленно брели по глубокому снегу вдоль железнодорожного полотна. The donkey was plodding slowly along underthc heavy load. — Ослик еле плелся под тяжестью поклажи.
    12. to hobble — ковылять, прихрамывать: Не hobbled along. — Он шел прихрамывая. The man hobbled along on his crutches. — Мужчина ковылял на костылях.
    13. to shuffle — ходить шаркая ногами (двигаться медленно и с шумом, не поднимая ног от пола на должную высоту): Не shuffled to the bar across the room. — Он пошел шаркающей походкой к бару. Supporting herself on Ann's arm the old woman shuffled towards the door. — Опираясь на руку Анны, старушка шаркая шла к двери. I heard Bob shuffling around the kitchen. — Я слышала, как Боб шаркая ногами тяжело двигался по кухне.
    14. to shamble — ходить вразвалку; ходить волоча ноги (медленно и неуклюже, ленивой походкой двигаться, наклоняясь вперед): The old man shambled off. — Старик, волоча ноги, пошел прочь. Не shambled into the room and up lo the window. — Он ввалился в комнату и вразвалку подошел к окну. Looking tired, Parker shambled to the stage and started playing. — С усталым видом Паркер медленно прошел на сиену и начал играть.
    15. to tiptoe — ходить на цыпочках ( стараться быть незамеченным или не производить шума): Bobby tiptoed past his daughter's bedroom so as not to wake her. — Бобби на цыпочках прошел мимо спальни дочери, чтобы не разбудить ее. They tiptoed from room to room, afraid to speak above a whisper. — Они ходили на цыпочках из комнаты в комнату и говорили только шепотом.
    16. to sneak — ходить крадучись, красться (тихо двигаться прячась от кого-либо, особенно если вы делаете что-либо плохое и не хотите быть пойманным): The thieves sneaked in when the guard had his back turned. — Воры крадучись пробрались внутрь, когда охранник стоял к ним спиной. Polly sneaked in through back yard so that her parents wouldn't wake up and see how late it was. — Полли крадучись вошла со двора так, чтобы не разбудить родителей и не дать им понять, как поздно она пришла.
    17. to stagger — ходить хромая, ходить шатаясь, шататься (двигаться неуверенной походкой, шатаясь из стороны в сторону, почти падая, особенно из-за того, что вы устали, пьяны или ранены): I was hit on the head and just managed to stagger out of the room. — Меня ударили по голове, и я с трудом, шатаясь выбрался из комнаты. My father was staggering under weight of a huge parcel. — Мой отец шел пошатываясь под тяжестью огромного пакета.
    18. to stumble — спотыкаться, ходить спотыкаясь (неуверенно двигаться, натыкаясь на то, что под ногами, или потому, что вы устали или пьяны): The room was dark and Sten nearly fell over a chair as he stumbled to the corner. — В комнате было темно, и Стэн споткнулся о стул и чуть не упал, идя в угол комнаты. Having drunk half a bottle of whisky I stumbled upstairs and to bed. — Выпив с полбутылки виски, я спотыкаясь поднялся наверх и лег в кровать.
    19. to lurch — идти нетвердой походкой, пошатываться, неуверенно двигаться: Не lurched sideways two steps as the stone rolled by. — Он уклонился на два шага в сторону, когда камень прокатился мимо. Harry lurched to the bathroom clutching his stomach in pain. — Гарри шатаясь побрел в ванную комнату, хватаясь от боли за живот.
    20. to swagger — расхаживать, ходить с гордым/важным видом, самоуверенно ( идти двигая всем корпусом): Paul swaggered arrogantly into (he boxing ring, as if he had already won the fight. — Павел с гордым видом вышел на ринг так, как будто он уже одержал победу. Sally's boyfriend came swaggering down the steps with his hands in his jackets. — Дружок Салли, засунув руки в карманы, с гордым видом спускался по ступенькам лестницы. Ben left the room swaggering clearly pleased with himself. — Бен гордо вышел из комнаты, весьма довольный собой.
    21. to strut — ходить с важным видом, выхаживать, вышагивать (ходить с гордо поднятой головой, грудью вперед, всем видом показывая свою важность): Look at him strutting across the office, he thinks he is so important. — Посмотри, как он вышагивает по офису, он думает, что он очень важная птица. During the mating season the male bird will strut in front of the female. — Во время сезона спаривания самец гордо вышагивает перед самкой.
    22. to wander — бродить, бесцельно ходить (часто по местам, которые вы не знаете): Tom spent most of his free time wandering about in the woods. — Большую часть своего свободного времени Том бродил по лесам. For an hour and a half we were wandering around the old city, completely lost. — Совершенно заблудившись, часа полтора мы бродили по старому городу.
    23. to prowl — рыскать, идти крадучись (тихо передвигаться, оставаясь незамеченным, особенно при попытке что-либо украсть или напасть на кого-либо): The nurse said that she could hear someone prowling in the garden. — Няня сказала, что она слышала, как кто-то крадучись ходил по саду. Several wolves prowled around the camp, but they were kept at bay by the fire. — Несколько волков рыскали у лагеря, но их остановил огонь костра. The police have warned the public the killer may be prowling the streets. — Полиция предупредила население, что убийца еще может бродить по улицам.
    24. to wade — ходить по воде, шлепать: Ellen waded into the water then started swimming across the river. — Эллен вошла в воду и поплыла на тот берег реки. The rescuers worked wading waist deep in the muddy water. — Спасатели работали по грудь в грязной воде. The fisherman got out of the boat and waded ashore. — Рыбак вышел из лодки и вброд пошел к берегу.
    25. to pick one's way — осторожно ходить (идти, выбирая дорогу, обходя опасные места): The boys began to pick their way over the rocks towards the ocean. — Мальчики начали осторожно двигаться по камням в сторону океана. Gathering her skirt she began to pick her way through the puddles. — Подобрав юбку, она начала пробираться, обходя дождевые лужи.
    26. to edge — ходить пробираясь боком; ходить по краю (медленно и осторожно, двигаясь боком через небольшое, узкое пространство, которое не позволяет идти нормальным шагом): Ben edged sideways through the front door, which seemed to be stuck. — Бэн протиснулся через парадную дверь, которую по-видимому заело. Edging my way through the crowd I eventually managed to get to the bar. — Пробравшись боком через толпу, я наконец смог добраться до бара.

    Русско-английский объяснительный словарь > ходить

  • 12 трос


    cable
    -, боуденовский — bowden cable
    -, буксирный — tow cable
    -, буксировочный (связывающий спасательные плоты) — towline cut the towline if it is necessary to separate the liferafts.
    -, вытяжной (ручного раскрытия парашюта) — rip cord
    шнур или гибкая шпилька, служащая при выдергивании для открытия ранца и выпуска парашюта. — а cord or flexible cable on а mancarrying parachute which, when pulled, opens the pack and allows the parachute to deploy.
    -, вытяжной (вспомогательный для вытягивания элементов парашютной системы, см. шнур вытяжной) — lazy leg а cord intended to withdraw-certain items of a parachute assembly.
    -, вытяжной (вытяжное звено, фал парашюта) — static line
    - вытяжной (фал, вытяжной шнур чеки) — lanyard
    -, грузовой, с автоматическим освобождением груза при соприкосновении с землей) — automatic touchdown release cargo /load/ sling
    - для зацепления карабинов фалов парашютов (для принудительного ввода парашютов) — static cable а steel cable to which static lines are attached (inside of fuselage).
    - заземления (статический разрядник на стойке шасси) (рис. 27) — static discharge cable
    - заземления крышки заправочной горловиныfiller cap bonding cable
    - зачековкиlocking cable
    - зачековки (гибкая шпилька ранца парашюта) — locking pin а hole in the parachute pack flap cone admits a locking pin.
    - инерционного замка подтяга плечевых ремнейinertia reel shoulder harness cable
    - натяжной (оттяжной) — guy cable /rope/, guy
    трос для удерживания объекта в заданном (фиксированном) положении. — а горе used to keep something in position or steady.
    - обратной связи управления (поворотом) переднего колесаnosewheel steering feedback cable
    -, оттяжной — guy cable /rope/, guy
    -, предохранительный — safety rope
    -, предохранительный (парашюта) — life line
    -, приводной (возд. балона плота) — lanyard /rip cable, cord/ (or raft air bottle)

    life raft is inflated by jerking the air bottle lanyard.
    - принудительного ввода парашютной системы (трос пвпс) — static cable а static link is attached and slides on the static cable.
    - принудительного ввода (раскрытия) парашютовstatic cable
    стальной трос, протянутый вдоль борта кабины, к которому крепятся и скользят стренги или вытяжные звенья парашютов. — а steel cable to which strops or static links are attached and can slide, extending along one side of the fuselage and secured at both ends.
    - принудительного раскрытия парашютов, трос прп — static cable
    - разблокировки стреляющеro механизма (катапультного кресла)seat ejection gun unlock cable
    -, расчалочный — bracing wire
    - ручного раскрытия парашюта (вытяжной)rip cord
    - синхронизации закрылковflap interconnection cable
    служит для согласования выпуска закрылков. — used to provide symmetric flap operation.
    -, слабонатянутый — slack cable
    - следящей системыfollow-up (system) cable
    - следящей системы управления поворотом колес (передней стойки шасси)(nosewheel) steering follow-up cable
    - сопровожденияassist cable
    -, спасательный (вертолетный) — rescue sling
    -, страховочный для работы на высокорасположенных элементах ла. — safety line
    -, такелажный — sling
    - управленияcontrol cable
    - управления поворотом передних колес(а)nosawheel steering control cable
    - фиксации гермошлема(pressure) helmet restraint cable
    - фиксации ног (на катапультном кресле) — foot restraint /retractor/ cable
    -, швартовочный (для крепления груза в отсеке) — tie-down cable
    -, швартовочный (ла) (рис. 150) — mooring /picketing/ cable in winds of over 80 knots aircraft must be headed into wind, with brakes on, wheel chocks lashed, nose and main gear moored.
    вытягивание (удлинение) т. на... мм — stretching of cable by... mm
    заделка т. — cable attachment
    заделка т. на коуш — cable splicing around thimble
    заделка т. на ролике — cable-to-pulley attachment
    заплетка т. (процесс) — cable splicing
    заплетка т. (узел) — cable splice
    натяжение т. — cable tension
    ослабление натяжения т. — cable slack(ness)
    провисание т. — cable sag(ging)
    сплеснивание т. — cable splicing
    сращивание т. — cable splicing
    выбирать слабину т. — take up cable slack
    заделывать т. на коуш — splice cable around the thimble
    ослаблять натяжение т. — slacken the cable
    регулировать натяжение т. на... кг — adjust the cable tension to... kg

    Русско-английский сборник авиационно-технических терминов > трос

  • 13 В-270

    ВОРОН (ГАЛОК, МУХ) СЧИТАТЬ ВОРОН (МУХ) ЛОВИТЬ all coll, disapprov VP subj: human
    1. (often pres (in questions), neg imper, or infin with хватит, нечего etc) to look around aimlessly, absent-mindedly, getting distracted from what one is doing
    X ворон считает \В-270 X stands (sits etc) gaping
    X stands (sits etc) there just looking (around)
    Neg Imper ворон не считай - (in limited contexts
    with verbs of motion) look
    watch) where you're going.
    «Чего ворон-то считаете? - закричала Анна и замахала рукой. - Не видите, кто приехал?» (Абрамов 1). "Are you going to stand there just looking?" Anna waved her arms. "Don't you see who's come?" (1b).
    «Как пройти в управление, к Дудыреву?» - «Топай прямо да ворон не считай. Толкнут ненароком...» Семён направился по обочине дороги, оглядываясь во все стороны (Тендряков 1). "Can you tell me how to get to the Director's office, to Dudyrev?" "Straight ahead, only look where you're going, or there'll be an accident." Simon made his way along the path by the road, looking around him on all sides (1a).
    2. to spend time aimlessly, lazily, be idle
    X ворон считает = X loafs (around)
    X twiddles (sits around twiddling) his thumbs X does absolutely nothing X sits on his hands X goofs off.
    Прекрати ворон считать! Сейчас же садись за уроки! Quit goofing off! Sit down and do your homework right now!
    3. to be inactive (in a situation when some action is required or expected)
    X ворон считает - X (stands back (by) and) does nothing
    X sits on his hands X takes no action.
    Вопрос о том, какому отделу отдать освободившееся помещение, ещё не решён, но если вы будете ворон считать, то ваш отдел его точно не получит. It has yet to be decided which department will get the offices that have been vacated, but if you don't take action yours certainly won't.

    Большой русско-английский фразеологический словарь > В-270

  • 14 ворон ловить

    ВОРОН <ГАЛОК, МУХ> СЧИТАТЬ; ВОРОН < МУХ> ЛОВИТЬ all coll, disapprov
    [VP; subj: human]
    =====
    1. [often pres (in questions), neg imper, or infin with хватит, нечего etc]
    to look around aimlessly, absent-mindedly, getting distracted from what one is doing:
    - X ворон считает X stands <sits etc> gaping;
    - X stands <sits etc> there just looking (around);
    || Neg Imper ворон не считай [in limited contexts;
    - with verbs of motion] look < watch> where you're going.
         ♦ "Чего ворон-то считаете? - закричала Анна и замахала рукой. - Не видите, кто приехал?" (Абрамов 1). "Are you going to stand there just looking?" Anna waved her arms. "Don't you see who's come?" (1b).
         ♦ "Как пройти в управление, к Дудыреву?" - "Топай прямо да ворон не считай. Толкнут ненароком..." Семён направился по обочине дороги, оглядываясь во все стороны (Тендряков 1). "Can you tell me how to get to the Director's office, to Dudyrev?" "Straight ahead, only look where you're going, or there'll be an accident." Simon made his way along the path by the road, looking around him on all sides (1a).
    2. to spend time aimlessly, lazily, be idle:
    - X ворон считает X loafs (around);
    - X twiddles < sits around twiddling> his thumbs;
    - X goofs off.
         ♦ Прекрати ворон считать! Сейчас же садись за уроки! Quit goofing off! Sit down and do your homework right now!
    3. to be inactive (in a situation when some action is required or expected):
    - X ворон считает X (stands back <by> and) does nothing;
    - X takes no action.
         ♦ Вопрос о том, какому отделу отдать освободившееся помещение, ещё не решён, но если вы будете ворон считать, то ваш отдел его точно не получит. It has yet to be decided which department will get the offices that have been vacated, but if you don't take action yours certainly won't.

    Большой русско-английский фразеологический словарь > ворон ловить

  • 15 ворон считать

    ВОРОН <ГАЛОК, МУХ> СЧИТАТЬ; ВОРОН < МУХ> ЛОВИТЬ all coll, disapprov
    [VP; subj: human]
    =====
    1. [often pres (in questions), neg imper, or infin with хватит, нечего etc]
    to look around aimlessly, absent-mindedly, getting distracted from what one is doing:
    - X ворон считает X stands <sits etc> gaping;
    - X stands <sits etc> there just looking (around);
    || Neg Imper ворон не считай [in limited contexts;
    - with verbs of motion] look < watch> where you're going.
         ♦ "Чего ворон-то считаете? - закричала Анна и замахала рукой. - Не видите, кто приехал?" (Абрамов 1). "Are you going to stand there just looking?" Anna waved her arms. "Don't you see who's come?" (1b).
         ♦ "Как пройти в управление, к Дудыреву?" - "Топай прямо да ворон не считай. Толкнут ненароком..." Семён направился по обочине дороги, оглядываясь во все стороны (Тендряков 1). "Can you tell me how to get to the Director's office, to Dudyrev?" "Straight ahead, only look where you're going, or there'll be an accident." Simon made his way along the path by the road, looking around him on all sides (1a).
    2. to spend time aimlessly, lazily, be idle:
    - X ворон считает X loafs (around);
    - X twiddles < sits around twiddling> his thumbs;
    - X goofs off.
         ♦ Прекрати ворон считать! Сейчас же садись за уроки! Quit goofing off! Sit down and do your homework right now!
    3. to be inactive (in a situation when some action is required or expected):
    - X ворон считает X (stands back <by> and) does nothing;
    - X takes no action.
         ♦ Вопрос о том, какому отделу отдать освободившееся помещение, ещё не решён, но если вы будете ворон считать, то ваш отдел его точно не получит. It has yet to be decided which department will get the offices that have been vacated, but if you don't take action yours certainly won't.

    Большой русско-английский фразеологический словарь > ворон считать

  • 16 галок считать

    ВОРОН <ГАЛОК, МУХ> СЧИТАТЬ; ВОРОН < МУХ> ЛОВИТЬ all coll, disapprov
    [VP; subj: human]
    =====
    1. [often pres (in questions), neg imper, or infin with хватит, нечего etc]
    to look around aimlessly, absent-mindedly, getting distracted from what one is doing:
    - X ворон считает X stands <sits etc> gaping;
    - X stands <sits etc> there just looking (around);
    || Neg Imper ворон не считай [in limited contexts;
    - with verbs of motion] look < watch> where you're going.
         ♦ "Чего ворон-то считаете? - закричала Анна и замахала рукой. - Не видите, кто приехал?" (Абрамов 1). "Are you going to stand there just looking?" Anna waved her arms. "Don't you see who's come?" (1b).
         ♦ "Как пройти в управление, к Дудыреву?" - "Топай прямо да ворон не считай. Толкнут ненароком..." Семён направился по обочине дороги, оглядываясь во все стороны (Тендряков 1). "Can you tell me how to get to the Director's office, to Dudyrev?" "Straight ahead, only look where you're going, or there'll be an accident." Simon made his way along the path by the road, looking around him on all sides (1a).
    2. to spend time aimlessly, lazily, be idle:
    - X ворон считает X loafs (around);
    - X twiddles < sits around twiddling> his thumbs;
    - X goofs off.
         ♦ Прекрати ворон считать! Сейчас же садись за уроки! Quit goofing off! Sit down and do your homework right now!
    3. to be inactive (in a situation when some action is required or expected):
    - X ворон считает X (stands back <by> and) does nothing;
    - X takes no action.
         ♦ Вопрос о том, какому отделу отдать освободившееся помещение, ещё не решён, но если вы будете ворон считать, то ваш отдел его точно не получит. It has yet to be decided which department will get the offices that have been vacated, but if you don't take action yours certainly won't.

    Большой русско-английский фразеологический словарь > галок считать

  • 17 мух ловить

    ВОРОН <ГАЛОК, МУХ> СЧИТАТЬ; ВОРОН < МУХ> ЛОВИТЬ all coll, disapprov
    [VP; subj: human]
    =====
    1. [often pres (in questions), neg imper, or infin with хватит, нечего etc]
    to look around aimlessly, absent-mindedly, getting distracted from what one is doing:
    - X ворон считает X stands <sits etc> gaping;
    - X stands <sits etc> there just looking (around);
    || Neg Imper ворон не считай [in limited contexts;
    - with verbs of motion] look < watch> where you're going.
         ♦ "Чего ворон-то считаете? - закричала Анна и замахала рукой. - Не видите, кто приехал?" (Абрамов 1). "Are you going to stand there just looking?" Anna waved her arms. "Don't you see who's come?" (1b).
         ♦ "Как пройти в управление, к Дудыреву?" - "Топай прямо да ворон не считай. Толкнут ненароком..." Семён направился по обочине дороги, оглядываясь во все стороны (Тендряков 1). "Can you tell me how to get to the Director's office, to Dudyrev?" "Straight ahead, only look where you're going, or there'll be an accident." Simon made his way along the path by the road, looking around him on all sides (1a).
    2. to spend time aimlessly, lazily, be idle:
    - X ворон считает X loafs (around);
    - X twiddles < sits around twiddling> his thumbs;
    - X goofs off.
         ♦ Прекрати ворон считать! Сейчас же садись за уроки! Quit goofing off! Sit down and do your homework right now!
    3. to be inactive (in a situation when some action is required or expected):
    - X ворон считает X (stands back <by> and) does nothing;
    - X takes no action.
         ♦ Вопрос о том, какому отделу отдать освободившееся помещение, ещё не решён, но если вы будете ворон считать, то ваш отдел его точно не получит. It has yet to be decided which department will get the offices that have been vacated, but if you don't take action yours certainly won't.

    Большой русско-английский фразеологический словарь > мух ловить

  • 18 мух считать

    ВОРОН <ГАЛОК, МУХ> СЧИТАТЬ; ВОРОН < МУХ> ЛОВИТЬ all coll, disapprov
    [VP; subj: human]
    =====
    1. [often pres (in questions), neg imper, or infin with хватит, нечего etc]
    to look around aimlessly, absent-mindedly, getting distracted from what one is doing:
    - X ворон считает X stands <sits etc> gaping;
    - X stands <sits etc> there just looking (around);
    || Neg Imper ворон не считай [in limited contexts;
    - with verbs of motion] look < watch> where you're going.
         ♦ "Чего ворон-то считаете? - закричала Анна и замахала рукой. - Не видите, кто приехал?" (Абрамов 1). "Are you going to stand there just looking?" Anna waved her arms. "Don't you see who's come?" (1b).
         ♦ "Как пройти в управление, к Дудыреву?" - "Топай прямо да ворон не считай. Толкнут ненароком..." Семён направился по обочине дороги, оглядываясь во все стороны (Тендряков 1). "Can you tell me how to get to the Director's office, to Dudyrev?" "Straight ahead, only look where you're going, or there'll be an accident." Simon made his way along the path by the road, looking around him on all sides (1a).
    2. to spend time aimlessly, lazily, be idle:
    - X ворон считает X loafs (around);
    - X twiddles < sits around twiddling> his thumbs;
    - X goofs off.
         ♦ Прекрати ворон считать! Сейчас же садись за уроки! Quit goofing off! Sit down and do your homework right now!
    3. to be inactive (in a situation when some action is required or expected):
    - X ворон считает X (stands back <by> and) does nothing;
    - X takes no action.
         ♦ Вопрос о том, какому отделу отдать освободившееся помещение, ещё не решён, но если вы будете ворон считать, то ваш отдел его точно не получит. It has yet to be decided which department will get the offices that have been vacated, but if you don't take action yours certainly won't.

    Большой русско-английский фразеологический словарь > мух считать

  • 19 пойти по рукам

    I
    ХОДИТЬ/ПОЙТИ ПО РУКАМ
    [VP; subj: concr, often a noun denoting a written or printed work; more often impfv; fixed WO]
    =====
    to be passed from one person to another:
    - X ходил по рукам X was passed from hand to hand;
    - X (was) circulated.
         ♦ Тогда же я прочла "Разговоры со Сталиным" Милована Джиласа. Австралийское издание этой книги... кто-то привёз в Москву, и она ходила по рукам (Аллилуева 2). It was at this time that I read Milovan Djilas' Conversations with Stalin. Someone had brought to Moscow the Australian version of this book, and it was passed from hand to hand (2a).
         ♦ Ходили по рукам полемические сочинения, в которых объяснялось, что горчица есть былие [= былье], выросшее из тела девки-блудницы... (Салтыков-Щедрин 1). Polemical compositions were handed around, explaining that mustard was a green which grew from the body of a fornicatress.. (1a).
         ♦ [Твардовский] боялся другого, он еще с лета угрожающе выпытывал, не ходит ли роман по рукам? (Солженицын 2). [Tvardovsky's] fears were quite different. That summer he had begun asking menacingly whether the novel was going the rounds (2a).
         Роман "Доктор Живаго" в рукописи несколько лет ходил в Москве по рукам, официально обсуждался в наших редакциях... (Гладков 1). The novel [Doctor Zhivago] had been circulating in Moscow in manuscript copies for several years, it had been officially under consideration by Soviet publishers., (1a)
    II
    ХОДИТЬ/ПОЙТИ ПО РУКАМ coll
    [VP; subj: human, female; usu. pfv]
    =====
    to have sexual relations with one man after another:
    - X пошла по рукам X began (has been) sleeping around;
    - [in limited contexts] X began (has been) living off men.
         ♦ "Мать, говорит, воровка, по магазинам промышляет, а она сама с пятнадцати по рукам пошла, но разденется, есть на что посмотреть!" (Максимов 1). "She said her mother's a thief, goes around stealing from shops, and that she herself has been living off men since she was fifteen, but when she took her clothes off, she was something to look atr (1a).

    Большой русско-английский фразеологический словарь > пойти по рукам

  • 20 ходить по рукам

    I
    ХОДИТЬ/ПОЙТИ ПО РУКАМ
    [VP; subj: concr, often a noun denoting a written or printed work; more often impfv; fixed WO]
    =====
    to be passed from one person to another:
    - X ходил по рукам X was passed from hand to hand;
    - X (was) circulated.
         ♦ Тогда же я прочла "Разговоры со Сталиным" Милована Джиласа. Австралийское издание этой книги... кто-то привёз в Москву, и она ходила по рукам (Аллилуева 2). It was at this time that I read Milovan Djilas' Conversations with Stalin. Someone had brought to Moscow the Australian version of this book, and it was passed from hand to hand (2a).
         ♦ Ходили по рукам полемические сочинения, в которых объяснялось, что горчица есть былие [= былье], выросшее из тела девки-блудницы... (Салтыков-Щедрин 1). Polemical compositions were handed around, explaining that mustard was a green which grew from the body of a fornicatress.. (1a).
         ♦ [Твардовский] боялся другого, он еще с лета угрожающе выпытывал, не ходит ли роман по рукам? (Солженицын 2). [Tvardovsky's] fears were quite different. That summer he had begun asking menacingly whether the novel was going the rounds (2a).
         Роман "Доктор Живаго" в рукописи несколько лет ходил в Москве по рукам, официально обсуждался в наших редакциях... (Гладков 1). The novel [Doctor Zhivago] had been circulating in Moscow in manuscript copies for several years, it had been officially under consideration by Soviet publishers., (1a)
    II
    ХОДИТЬ/ПОЙТИ ПО РУКАМ coll
    [VP; subj: human, female; usu. pfv]
    =====
    to have sexual relations with one man after another:
    - X пошла по рукам X began (has been) sleeping around;
    - [in limited contexts] X began (has been) living off men.
         ♦ "Мать, говорит, воровка, по магазинам промышляет, а она сама с пятнадцати по рукам пошла, но разденется, есть на что посмотреть!" (Максимов 1). "She said her mother's a thief, goes around stealing from shops, and that she herself has been living off men since she was fifteen, but when she took her clothes off, she was something to look atr (1a).

    Большой русско-английский фразеологический словарь > ходить по рукам

См. также в других словарях:

  • Around the World — may refer to: * Circumnavigation, traveling all the way around the world * Around the World (album), the debut album by Ami Suzuki * Around the World (basketball), a basketball variant * Around the World (Fan Zhuan Di Qiu) , an album released by… …   Wikipedia

  • Around the World (La La La La La) — Single by ATC from the album Planet Pop …   Wikipedia

  • Around the World (game) — Around the World is a card based drinking game, similar to, but more complex (and at the same time quicker) than, Fuck the Dealer. It is notorious for the large quantity of drinks consumed, especially if multiple rounds are played, and the… …   Wikipedia

  • Around — A*round , prep. 1. On all sides of; encircling; encompassing; so as to make the circuit of; about. [1913 Webster] A lambent flame arose, which gently spread Around his brows. Dryden. [1913 Webster] 2. From one part to another of; at random… …   The Collaborative International Dictionary of English

  • Around — A*round , adv. [Pref. a + round.] 1. In a circle; circularly; on every side; round. [1913 Webster] 2. In a circuit; here and there within the surrounding space; all about; as, to travel around from town to town. [1913 Webster] 3. Near; in the… …   The Collaborative International Dictionary of English

  • Around the World (1956 song) — Around the World was the theme tune from the 1956 movie Around the World in 80 Days . It never actually featured with the lyrics in the Around the World in Eighty Days film , but it is the vocal version which has by far become the better known.… …   Wikipedia

  • Around the Bay in a Day — is a recreational cycling event organised by Bicycle Victoria in Victoria, Australia. Cyclists register to ride a 210km course starting and ending in Melbourne around Port Phillip, either clockwise or anti clockwise, catching the ferry between… …   Wikipedia

  • around — [adv1] situated on sides, circumference, or in general area about, all over, any which way, encompassing, everywhere, in the vicinity, in this area, neighboring, over, throughout; concept 581 around [adv2] close to a place about, almost,… …   New thesaurus

  • Around the World in Eighty Days (book) — infobox Book | name = Around the World in Eighty Days title orig = Le tour du monde en quatre vingts jours translator = George Makepeace Towle [quote|Mercier is erroneously credited in some bibliographies with a translation of Around the World in …   Wikipedia

  • Around the World with Willy Fog — Infobox Television show name = Around the World with Willy Fog caption = format = Animation creator = Jules Verne BRB Internacional Nippon Animation Claudio Biern Boyd developer = Luis Ballester Fumio Kurokawa starring = narrated = opentheme = La …   Wikipedia

  • Around the Horn — Infobox Television show name = Around the Horn caption = Around the Horn Logo genre = Sports talk and debate camera = picture format = audio format = runtime = 30 minutes creator = developer = producer = Dan Farmer, Aaron Solomon, Bill Wolff… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»